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ABSTRACT: Pattern formation is a fundamental process in biological development, enabling the transformation of initially 

uniform or random states into spatially ordered structures. A comprehensive understanding of the formation and function of these 

patterns is crucial for unraveling the underlying principles of biological design and engineering. In recent years, synthetic biology 

has emerged as a powerful discipline for investigating and manipulating pattern formation in biological systems, involving the 

design and construction of novel biological components, circuits, and networks with specific functionalities. The integration of 

computational simulations (in silico) and experimental techniques (wet lab) in synthetic biology has significantly advanced our 

knowledge of pattern formation and its implications in biological design and engineering. This review provides an overview of the 

computational simulations employed in studying pattern formation and introduces the representative and cutting-edge experimental 

methods utilized in wet labs. 
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1. Introduction 

Pattern formation, the process of generating spatially ordered structures from an initially uniform or random state, 

is a vital aspect of biological development. This phenomenon is widespread across various tissue levels and organism 

types, and understanding the formation and function of these patterns is crucial for unraveling the principles of 

biological design and engineering. In 1952, Alan Turing proposed one of the most influential theories of pattern 

formation, which demonstrated that a system of two or more diffusible substances reacting with each other can produce 

stable spatial patterns under certain conditions [1]. Other mechanisms, such as morphogen gradients, cell–cell contact 

signaling, and self-organization, can also generate complex and dynamic patterns that regulate the development, 

differentiation, and function of biological systems. 

In recent years, synthetic biology has emerged as a powerful tool for studying and manipulating pattern formation 

in biological systems. Synthetic biology aims to design and build novel biological components, circuits, and networks 

that can perform specific functions or behaviors. By applying synthetic biology methods, researchers have managed to 

create artificial patterns in living systems by emulating natural mechanisms or inventing new ones [2–9]. Furthermore, 

synthetic biology can be employed to reverse-engineer natural patterns, facilitating an understanding of their underlying 

logic and function (Figure 1). 

https://doi.org/10.1016/j.arabjc.2017.05.011
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Figure 1. Overview of integrating in silico and wet lab approaches in pattern formation. The utilization of genetic circuits in bacteria 

or mammalian cells can yield patterns analogous to those obtained through computational simulations. 

2. Turing Patterns and Self-organization 

Over the years, various mathematical frameworks have been proposed to understand the phenomenon of pattern 

formation in nature. Among these frameworks, the Turing model, introduced by renowned British mathematician Alan 

Turing in the 1950s, has emerged as a fascinating paradigm that has been validated across multiple biological scales.  

The concept of Turing patterns was first elucidated in Turing’s seminal paper, “The Chemical Basis of 

Morphogenesis” [1], which offered insights into the mechanisms behind the emergence of intricate symmetrical and 

asymmetrical patterns in biological systems. Turing presented a theoretical model that relied on the interaction between 

two hypothetical chemical species—an activator and an inhibitor—within a reaction-diffusion system. He demonstrated 

that localized fluctuations in the concentrations of these chemicals, which he referred to as “morphogens”, can give rise 

to complex patterns. 

The general form of Turing’s model can be described by two reaction-diffusion equations: 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢∇2𝑢 + 𝑓(𝑢, 𝑣) (1) 

𝜕𝑣

𝜕𝑡
= 𝐷𝑣∇2𝑣 + 𝑔(𝑢, 𝑣) (2) 

in the above equations, u and v represent the concentrations of activators and inhibitors, respectively. Du and Dv denote 

the diffusion coefficients, while ∇2 signifies the second-order spatial diffusion, represented by the Laplace operator. 

The functions f(u,v) and g(u,v) describe the reaction, and their form and parameter values characterize the interaction 

between the activator and inhibitor. 

Turing Patterns Exist Widely in Nature 

Turing models have been found to effectively account for various natural phenomena involving pattern formation 

in the animal kingdom. For instance, one-dimensional patterning in cyanobacteria can be explained by a simple reaction-

diffusion model composed of three components: HetL, HetR, and PatS [10]. Additionally, the formation of human 

fingerprints has been attributed to the reaction-diffusion system of the WNT and BMP pathways, which govern cell 

migration and differentiation during early follicular development [11]. Similarly, the striped patterns observed in the 

hair of cats and the distinctive spots of leopards have been linked to the Wnt–Dkk reaction-diffusion system [12,13]. 

Furthermore, the generation of regularly spaced transverse ridges in the palates of animals is believed to be controlled 

by a reaction-diffusion model involving fibroblast growth factor (FGF) as the activator and Sonic hedgehog (Shh) as 

the inhibitor [14]. 

Beyond striped patterns, the Turing model has been implicated in various complex developmental processes. 

Notably, the spatial periodicity observed during Drosophila development, described by the Turing-Child field, is a well-

known example [15] Similarly, the Turing-Child field has been employed to explain the symmetry and regularity in 

plant flower formation based on the ABC model of morphogenesis [11]. The periodic expression of Sox9 during tracheal 

development is also thought to be associated with the Turing pattern [12], and the Turing model has even been proposed 

as a theoretical framework for understanding the formation of the tarsal attachment microstructure in stick insects 

(Phasmatodea) [13]. 

At a broader ecological level, ecologists have utilized the Turing model to elucidate patterns and dynamics in 

ecosystems. Early studies applied the Turing model to explain the patch distribution of plankton [16]. Subsequently, 

mathematical models derived from the Turing model, considering the similarity between predator-prey interactions and 
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activator-inhibitor dynamics, were employed to account for the temporal periodicity observed in predator and prey 

populations [17]. 

The prevalence of Turing-like self-organization phenomena across different biological scales underscores the 

importance of studying the Turing model for comprehending the formation and evolution of life. Furthermore, insights 

gained from Turing pattern-like self-organization have the potential to inspire the design of biological materials and the 

creation of artificial living structures [18–20]. By understanding the fundamental principles behind Turing patterns, 

researchers can apply these concepts to various fields, such as tissue engineering, biomaterials, and synthetic biology. 

This knowledge can lead to innovative solutions for medical treatments, environmental sustainability, and the 

development of novel materials with unique properties. 

3. Pattern Is Determined by Morphogens 

3.1. Gradient 

3.1.1. Morphogen Gradient 

The determination of cell differentiation in multicellular organisms is influenced by the presence and concentration 

of morphogens within their environment. Notably, in Drosophila, the concentration of Decapentaplegic (Dpp) plays a 

pivotal role in the patterning of the anterior-posterior (AP) axis during the formation of wing imaginal discs [21,22]. 

Similarly, in Xenopus laevis, Bone Morphogenetic Protein 4 (BMP4) is responsible for the patterning of the dorsal-

ventral (DV) axis in the mesoderm [23]. Conceptually, this process can be abstracted into a physical model, where 

morphogens, which can be small molecules or peptides, diffuse through biological tissues, resulting in the establishment 

of concentration gradients. These gradients, in turn, determine the differentiation of cells into distinct types based on 

their location within the tissue. 

Morphogen gradients are crucial for proper development, as they provide spatial information to cells and help 

establish the body plan and tissue organization. The gradients can be formed by various mechanisms, including passive 

diffusion, active transport, and localized production and degradation of morphogens. Once established, cells within the 

gradient can interpret the morphogen concentration through receptor-ligand interactions, which then trigger intracellular 

signaling cascades that ultimately lead to changes in gene expression and cell differentiation. By understanding the 

dynamics of morphogen gradients and their role in pattern formation, researchers can gain valuable insights into the 

fundamental processes of development, regeneration, and tissue repair. 

A logic for cell fate determination by diffusible morphogens can be described below: 

∂𝑢

∂𝑡
= 𝐷𝑢∇2𝑢  −  d𝑢 ⋅ 𝑢 (3) 

f(c) =   {

𝑓𝑎𝑡𝑒 1,              𝑢 < 𝛼 
   𝑓𝑎𝑡𝑒 2, 𝛼 < 𝑢 ≤ 𝛽

𝑓𝑎𝑡𝑒 3,               u ≥ 𝛽
 (4) 

In the given equations:  

• u represents the concentration of the morphogen 

• Du is the diffusion coefficient 

• ∇2 is the second-order spatial diffusion represented by the Laplace operator. 

• du·u implies that morphogen u will spontaneously degrade over time 

The equation f(c) describes how cell fate is determined by the morphogen concentration u. In this scenario, it is 

assumed that cells can decide between three fates based on the concentration of 𝑢 at their location.  

1. If the concentration of u does not reach the threshold α, cells do not differentiate (fate 1).  

2. If the concentration of u is higher than the threshold α and lower than β, cells differentiate into fate 2.  

3. If the concentration of u reaches the threshold β, cells differentiate into fate 3.  

By using these equations, researchers can model how morphogen gradients determine cell fate during development. 

The equations capture the essential elements of morphogen-guided cell differentiation: diffusion, degradation, and 

threshold-dependent responses. This mathematical representation can be useful for understanding and predicting the 

formation of tissue patterns and the organization of multicellular organisms. 

Indeed, the simulation results offer valuable insights into the role of morphogen gradients in controlling cell 

differentiation and pattern formation. The distinct differentiation states observed in the model—fully differentiated, 

semi-differentiated, and undifferentiated—correspond to the concentration levels of the morphogen in different regions 

(depicted in Figure 2). This spatial dependence of cell fate determination is a crucial aspect of tissue development and 

organization in multicellular organisms. 
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The simulation demonstrates the power of morphogen gradients in orchestrating cell differentiation and tissue 

patterning. By establishing concentration gradients, morphogens create a positional information system that guides cells 

to adopt specific fates based on their location within the developing tissue. This process is essential for the formation 

of complex structures and the proper functioning of biological systems. 

These findings not only reinforce the importance of understanding morphogen gradients in developmental biology 

but also have broader implications for tissue engineering, regenerative medicine, and the study of diseases related to 

abnormal cell differentiation. By gaining a deeper understanding of the mechanisms underlying morphogen-guided cell 

fate determination, researchers can develop new strategies to manipulate cellular behavior for therapeutic purposes and 

advance our knowledge of tissue development and repair. 

 

Figure 2. Illustrates the simulation of cell growth and differentiation in a 10 × 100 area over 500 unit times. In this example, the 

concentration of morphogen 𝑢 spreads from left to right along the x-axis with the initial concentration of 1, the diffusion coefficient 

Du is 0.1; the threshold β is 10 times that of α (α = 0.0001). Periodic boundary condition is used. Top panel: The simulation result of 

morphogen concentration distribution. - White represents the maximum concentration. - Black represents a concentration of 0. This 

panel shows how the morphogen concentration forms a gradient, with the highest concentration on the left side (white) and decreasing 

concentration towards the right side (black). Bottom panel: The simulation result of cell differentiation based on morphogen 

concentration. - Yellow represents fully differentiated cells (fate 3). - Dark green represents undifferentiated cells (fate 1). - Light green 

represents semi-differentiated cells (fate 2). This panel demonstrates how cells differentiate according to the morphogen concentration. 

Cells near the high-concentration region (left side) differentiate into fate 3 (yellow), while cells in the middle region with intermediate 

concentration differentiate into fate 2 (light green). Cells in the low-concentration region (right side) remain undifferentiated (dark 

green). This simulation provides a visual representation of how morphogen gradients direct cell differentiation and pattern formation 

in a developing tissue. It highlights the importance of understanding the role of morphogens in the organization and development of 

multicellular organisms. 

 

Figure 3. The impact of varying morphogen diffusion coefficients and cell differentiation thresholds on the resulting pattern of cell 

differentiation. In all the simulations, threshold β is assumed to be 10α. The initial and boundary condition is the same as the 

simulation shown in Figure 2. 

Figure 3 showcases the significant influence of altering the morphogen diffusion coefficient Du and cell 

differentiation threshold (α) on the resulting patterning outcomes. By modifying these parameters, the model 

demonstrates the sensitivity of the patterning process to both the diffusion properties of the morphogen molecule and 

the cellular response threshold. 

There are several experimental approaches to manipulate these parameters: 

1. Increasing the diffusion coefficient Du by attaching a tag peptide to the morphogen to modify its diameter, which 

could affect the distribution and spread of the morphogen concentration gradient. 

2. Adjusting the strength of the transcription promoter to regulate the cell differentiation threshold (α). This can 

influence the morphogen concentration required for cells to differentiate, altering the final pattern of cell 

differentiation states. 
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3. Manipulating the binding affinity between the morphogen and its receptors can also impact the cell differentiation 

threshold (α). By modifying the sensitivity of the receptors, it is possible to control the cellular response to varying 

morphogen concentrations. 

These experimental techniques emphasize the tunable nature of the patterning process. By understanding and 

controlling these parameters, researchers can manipulate cell fate determination and tissue organization, with potential 

applications in fields such as developmental biology, tissue engineering, and regenerative medicine. 

3.1.2. Chemical Gradient and Cell Movement 

Chemotaxis indeed plays a significant role in the movement of single cells, such as bacteria, in response to chemical 

gradients present in their environment [24]. This phenomenon has the potential to be harnessed for artificial pattern 

formation and has been observed in various organisms, including E. coli. The formation of a chemotaxis ring on an agar 

plate is a prime example of how E. coli responds to chemical gradients in its environment [25]. This pattern formation 

results from the specific movements of individual bacteria through the run-and-tumble model. The run-and-tumble 

model consists of two primary movement states:  

1. “Run”: This state is characterized by persistent, long-distance motion, where the bacteria move in a relatively 

straight line. 

2. “Tumble”: This state involves random steering movements, causing the bacteria to change direction.  

As bacteria navigate through their environment, they continuously switch between these two states based on the 

perceived changes in chemical concentration. This decision-making process is mediated by an intricate signaling 

pathway, which allows bacteria to sense the changes in chemical gradients and adjust their movement accordingly.  

When a bacterium senses an increase in the concentration of an attractant chemical, it tends to prolong its “run” 

state and move toward the higher concentration. Conversely, if the bacterium senses a decrease in the attractant 

concentration, it is more likely to enter the “tumble” state and change direction.  

By understanding the mechanisms underlying bacterial chemotaxis, researchers can explore the potential applications 

of this phenomenon in various fields, such as microbiology, environmental bioremediation, and even in the development 

of synthetic biology-based systems for specific tasks, such as targeted drug delivery or biofilm disruption. 

Accurately simulating the run-and-tumble motion of bacteria can be computationally intensive due to the large 

number of individual particles involved. Simplifying the modeling process is often necessary to make the simulations 

more tractable and efficient. Using the diffusion equation to simulate bacterial movement is a common approach that 

simplifies the representation of bacterial chemotaxis while maintaining the essential dynamics influenced by chemical 

gradients. In this method, the presence of chemicals in the environment affects the speed of bacterial motion, which 

corresponds to adjustments in the diffusion coefficient (D). 

By utilizing the diffusion equation, the simulation can capture the overall behavior of bacterial chemotaxis without 

the need to model the intricate details of individual run-and-tumble events. This simplification allows researchers to 

analyze the impact of chemical gradients on bacterial movement, explore various scenarios, and make predictions about 

the behavior of bacterial populations in different environments.  

However, it is important to note that the diffusion-based approach is an approximation and may not capture all the 

nuances of bacterial chemotaxis, particularly in cases where individual cell behavior or specific interactions between 

cells and their environment are crucial for understanding the system. In such cases, more detailed individual-based 

models or hybrid modeling approaches may be required to obtain a comprehensive understanding of the system’s 

behavior. Nevertheless, the diffusion-based approach provides a valuable tool for studying bacterial chemotaxis in a 

more computationally efficient manner, enabling researchers to gain insights into the role of chemical gradients in 

bacterial movement and pattern formation. 

We assume that in the initial state, chemical u is uniformly distributed on the x-axis. To model a network where 

bacteria sense the environmental chemical u gradient and change their movement speed accordingly, you can 

incorporate the chemotaxis response into the bacterial behavior.  

d𝑢

d𝑡
=  − 𝑑𝑢 ⋅ 𝑣 (5) 

𝜕𝑣

𝜕𝑡
= 𝐷𝑣(𝑢)𝛻2𝑣  +  𝑑𝑣 ⋅ 𝑣 ⋅ 𝑢 (6) 

That is, chemical u is degraded by bacteria v at rate du. The bacteria v spread on the plane, the diffusion coefficient is 

Dv, and the bacteria grow (dv > 0) or die (dv < 0) under the influence of the chemical substance u according to the 

parameter dv. 



Synthetic Biology and Engineering 2023, 1, 10018 6 of 20 

 

𝐷𝑣(𝑢)𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑛𝑔 = 𝐷0 ⋅
𝛽2 ⋅ 𝑢𝑛 

𝐾2
𝑛 + 𝑢𝑛

 (7) 

𝐷𝑣(𝑢)𝑟𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑛𝑔 = 𝐷0 ⋅
𝛽1

1 + (
𝑢

𝐾1
)

𝑛 
(8) 

The diffusion coefficient, which influences the movement speed of bacteria, is determined by the previously 

mentioned functions. The repressing Hill equation is used to model the diffusion coefficient of the chemical that inhibits 

bacterial movement, while the activating Hill equation is used for the chemical that promotes bacterial movement. In 

this particular case, the Hill coefficient is chosen as an illustrative example of positively cooperative binding (n > 1) 

that reflects a common occurrence in nature, where the value of n is set to 2. K1 and K2 represent the repression and 

activation coefficients, respectively, which correspond to the concentration of the chemical u when half-maximal 

repression or activation is achieved. β1 and β2 denote the maximal expression levels of the activator and repressor, 

respectively. D0 refers to the original diffusion coefficient of bacteria that are unaffected by the chemical u. 

Based on the simulation results shown in Figure 4, it is evident that when the chemical u promotes bacterial 

movement and growth, the distribution of the bacterial population aligns with the chemical gradient. Conversely, when 

the chemical u inhibits bacterial movement and growth, the bacteria form a low-concentration band in the region with 

intermediate concentrations of chemical u. 

Similarly, the chemical gradient can be generated through diffusion. Assuming that Du represents the diffusion 

coefficient of the chemical substance u, the diffusion of this substance within the region can be characterized by the 

following equation. 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢∇2𝑢  −  𝑑𝑢 ⋅ 𝑣 (9) 

The result of spontaneous diffusion of chemical species to form a gradient (see Figure 5) is similar to that of an initial 

given gradient. 

 

Figure 4. Simulation results of bacterial movement represented by diffusion equation. The initial state assumes that cells grow 

uniformly in a 10 × 100 area and run for 300 time units; D0 = 0.001, β1 = 0.1, β2 = 1, K1 = K2 = 0.01. Periodic boundary condition is 

used. For activating effect simulation (Positive effect), select dv>0 and use Dv (u)activating to calculate the diffusion coefficient of each 

grid; for repressing effect simulation (Negative effect), select dv<0 and use Dv (u)repressing to calculate the diffusion coefficient of each 

grid. For chemical gradients, white indicates high concentration and black for low concentration; for cell concentrations, yellow 

indicates relatively high concentration and green indicates relatively low concentration. 

 

Figure 5. Simulation results of the concentration gradient formed by the spontaneous diffusion of chemical u with Du = 0.1. The 

initial state involves adding chemical u to a 1-unit-width strip in the center and running the simulation for 70 time units. Other 

conditions are same as the simulation in Figure 4. 

The reaction-diffusion model is well-known for its ability to generate the classic Turing pattern. A basic reaction-

diffusion model requires at least two interacting morphogens [1]. The FitzHugh-Nagumo (FHN) model, commonly 
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found in academic textbooks, serves as a prominent example of the reaction-diffusion framework, particularly in 

characterizing neuronal spiking dynamics on a two-dimensional (2D) substrate [26,27]. Furthermore, Meinhardt and 

Gierer theoretically showed that a stable pattern can emerge from a system composed of two morphogens with localized 

self-activation and lateral inhibition in 2000 [28]. Hence, to design a simple reaction-diffusion system for patterning, 

only two linear interactions need to be added to the diffusion equation of the two morphogens. For instance, the 

following equation describes a self-activating and mutually inhibiting network. 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢𝛻2𝑢  −  𝑑𝑢 ⋅ 𝑣 + 𝑔𝑢 ⋅ 𝑢 (10) 

𝜕𝑣

𝜕𝑡
= 𝐷𝑣𝛻2𝑣  − 𝑑𝑣 ⋅ 𝑢 + 𝑔𝑣 ⋅ 𝑣 (11) 

In this network, the diffusion coefficient of u, Du, is four times larger than the diffusion coefficient of v, Dv. Both the signal, 

u, and the reporter, v, have the same inhibition rate (du = dv) and the same self-activation rate (gu = gv). This represents the 

simplest form of the Gierer-Meinhardt model, while the simulation of patterning is presented in Figure 6. 

 

Figure 6. Simulation results of the reaction-diffusion model. Two 100 × 100 random matrices were generated as the initial states 

of u (left panel) and v (right panel), and the simulation was run for 500 time units. Du = 0.001, Dv = 0.005, du = dv = 0.01, gu = gv = 

0.02. Periodic boundary condition is used. White and yellow indicate high levels, while black and green represent low levels. 

The complexity of patterns attainable in a reaction-diffusion system increases with the addition of more 

morphogens, variations in diffusion coefficients, and the introduction of derived interaction functions. Notably, 

incorporating an extra morphogen into a system with two morphogens has been shown to yield an extensive array of 

475 distinct node networks capable of pattern formation, as demonstrated by Zheng et al. in 2016 [29]. This finding 

highlights the rich potential for pattern generation and the vast design space available within multi-morphogen reaction-

diffusion systems. 

3.1.3. Cell–cell Contact Signaling 

Apart from pattern formation observed in Turing-like systems, cellular patterning can also emerge through the 

transmission of information via direct cell–cell contact. These contact-dependent patterns might not rely on the diffusion 

of free morphogens, leading to unique mathematical characteristics that differ from traditional reaction-diffusion 

systems. 

Delta-Notch Signaling 

The Notch signaling pathway, considered a crucial lateral signaling circuit, serves as a highly conserved 

mechanism for intercellular communication. Its functionality depends on the interaction between DSL 

(Delta/Serrate/lag-2) family ligands on the surface of neighboring cells and the Notch receptor. When the ligand binds, 

the Notch receptor undergoes proteolytic cleavage, which activates or inhibits downstream gene expression, thus 

influencing cellular differentiation processes [30–32]. Importantly, since the delta ligand remains confined to the cell 

membrane, the signaling event is localized and does not exhibit diffusion, affecting only neighboring cells. As a result, 

the mathematical model used to describe delta-notch signaling fundamentally differs from the reaction-diffusion model. 

Similar to the Gierer-Meinhardt model, a basic Delta-Notch patterning model can be constructed with one type of 

cell inhibiting its neighbors. 

d𝑢

d𝑡
=  −𝛼 ⋅ ∑ 𝑢𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 + 𝛽  (12) 
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𝑓(𝑐) =   {
𝑓𝑎𝑡𝑒 1, 𝑢 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑓𝑎𝑡𝑒 2, 𝑢 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (13) 

In this network, the signal u represents the expression of the Delta ligand, which is inhibited by the signal u expression 

of neighboring cells, with α representing the inhibitory rate and β representing the constitutive expression rate. Cells 

are assumed to be hexagonal, and only ligands from cells in direct contact can bind to the receptor; hence, only signal 

u from the six neighbors surrounding the cell are considered. The function f(c) describes the cell fate decision affected 

by signal u: cells with an expression level of u greater than a threshold enter the differentiated state, while cells with a 

lower expression level maintain their undifferentiated state. 

The simulation results presented in Figure 7 showcase the impact of varying inhibitory rates on pattern formation. 

When the lateral inhibition effect is minimal (inhibitory rate, α = 0.001), the 2D cell plane exhibits a stripe pattern with a 

width of approximately 2 cells. Within a broader range of inhibitory rates (α = 0.01, 0.1), the 2D cell plane forms a stripe 

pattern with a width of 1 cell. However, if the inhibitory rate is either excessively low (α = 0.0001) or excessively high (α 

= 0.5), the network fails to establish a stable pattern. This example clearly illustrates the dependence of pattern formation 

on parameter values and emphasizes the significance of parameter adjustment in determining the formation or absence 

of patterns. The simulation results highlight the importance of fine-tuning the inhibitory rate to achieve desired cell 

patterning in the context of the Delta-Notch signaling pathway. The findings also underscore the critical role of lateral 

inhibition in regulating cellular differentiation and spatial organization. 

 

Figure 7. Simulation results of lateral inhibition, run for 200 time units; β = 0.1, threshold = 4. One cell was seeded at the center of 

the area in the initial state. In each running step of the time unit, every cell with fewer than 6 neighbors have the potential to grow 

a new cell in the empty neighboring space. The new cell will inherit the expression level of signal 𝑢 from its parent. Different 

inhibitory rates (α = 0.0001, 0.001, 0.01, 0.1, 0.5) were simulated respectively, and the threshold is set at 1.0. 

4. Pattern Formation in Synthetic Biology Systems 

Pattern formation within synthetic biology systems stands as a central focus for synthetic biologists. Researchers 

have made significant progress by constructing biological circuits and networks using natural or modified morphogens, 

leading to the realization of artificial pattern formation in both prokaryotes and eukaryotes. 

Through the manipulation of genetic circuits and/or regulatory elements, researchers can exert control over the 

expression of morphogens, thereby achieving desired spatial arrangements and morphological outcomes. This forward 

engineering approach enables the design and construction of synthetic biological systems with specific patterns and 

behaviors. 

At the same time, researchers investigate the characteristics of natural systems, such as morphogen gradients, 

quorum sensing circuits, or cell–cell contact signaling, to uncover the fundamental principles underlying pattern 

formation. By applying these principles, they construct synthetic systems that mimic or reproduce natural pattern 

phenomena. This reverse engineering approach enhances our understanding of the mechanisms driving natural pattern 

formation and provides insights for constructing artificial biological systems with desired pattern formation capabilities. 

Potential applications of synthetic biology in pattern formation extend to diverse fields, including tissue 

engineering, regenerative medicine, drug delivery, and biofabrication. By integrating the knowledge gleaned from both 

forward and reverse engineering approaches, synthetic biologists can develop novel solutions and tools for addressing 

complex biological challenges and advancing the field of synthetic biology. 

4.1. Pattern Formation by Forward Engineering 

Self-organization and Natural Morphogen Gradient: Stem-cell-based Embryo Models 

Stem-cell-based embryo models (SCBEMs), occasionally termed ‘synthetic embryos’ despite not involving 

synthetic gene circuits, have emerged as a highly promising technology for studying the developmental processes of 
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organisms. The underlying concept of these models revolves around the ability of various types of stem cells to undergo 

self-organization and differentiate into distinct cell types under the influence of natural morphogen pathways, thereby 

mimicking the structural formation observed in natural embryos [2,3,33,34]. 

In these models, researchers use pluripotent stem cells (PSCs), such as naïve, extended or primed PSCs as well as 

extra-embryonic stem cells, as the starting point for generating embryos-like structures [35,36]. These cells possess the 

ability to differentiate into various cell types and self-organize into complex structures, which can resemble early stages 

of embryonic development. 

The SCBEMs are achieved by providing an appropriate microenvironment, such as a 3D culture system, and 

introducing specific morphogens, growth factors, or small chemicals to guide cellular differentiation and organization. By 

carefully controlling the spatial and temporal distribution of these morphogens, researchers can recapitulate the natural 

morphogen gradients observed in real embryos, allowing the pluripotent stem cells to form embryo-like structures with 

correct spatial organization and cell type specification. 

This forward engineering approach has several advantages, including the ability to manipulate and study the effects 

of specific morphogens on the developmental process, creating complex tissue constructs for regenerative medicine, 

and reducing the ethical concerns associated with using real embryos for research purposes.  

However, there are also challenges in stem-cell-based embryo models, such as achieving a high degree of control 

over the morphogen gradients and fully understanding the complex interactions between various signaling pathways 

during embryonic development. Despite these challenges, stem-cell-based embryo models represent a powerful tool for 

investigating the fundamental principles of pattern formation and advancing the field of synthetic biology. 

The successful conversion of spatial information into gene expression information through morphogen gradients 

was first achieved in 2014 using human embryonic stem cells (hESCs) [2]. In this ground-breaking study, observable 

morphological changes were induced in hESCs cultured in a two-dimensional environment after treatment with 50 ng/mL 

BMP4 for 24~48 h (see Figure 8). Immunofluorescence imaging of CDX2, BRA, and SOX2 revealed a characteristic 

spatial pattern reminiscent of human germ layers during gastrulation [37]. 

 
Figure 8. A diagram of CDX2, BRA, SOX17, and SOX2 gradients and germ layer differentiation in 2D cultured hESCs [2]. In this 

experiment, 2D cultured hESC on micropatterned coverslip was treated with BMP4 for 24 h. The fluorescence intensity of CDX2, 

BRA, and SOC2 showed germ layers differentiation (adapted from Warmflash et al. [2,38]). 

In the context of the hESC study, the morphogen gradients induced by BMP4 treatment generated a spatial distribution 

of gene expression that resembles the “French flag” pattern, which was proposed by Lewis Wolpert in 1969 and represents 

a simple way to describe how cells in an embryo can interpret positional information and differentiate into distinct cell 

types [38]. However, the complete understanding of how hESCs interpret the BMP4 morphogen gradient and differentiate 

into distinct cell types based on their position within the gradient is yet to be fully determined [39]. 

This ground-breaking study demonstrated the potential of manipulating morphogen gradients to control the spatial 

patterning of gene expression in hESCs, which could have significant implications for understanding embryonic development 

and advancing the field of synthetic biology. By elucidating the mechanisms underlying morphogen gradient formation and 

cellular interpretation, researchers can gain valuable insights into the processes governing cell fate determination and 

pattern formation in developing organisms. 

Following the seminal study on two-dimensional (2D) germ layer differentiation, further advancements in the field 

have led to the emergence of more complex embryonic-like structures through stem cell self-organization and the 

establishment of morphogen gradients in 3D structures. The pioneering work in creating a stem-cell-based embryo 

model was published by Harrison et al. in 2017, where a mixture of embryonic stem cells (ESCs) and trophoblast stem 

cells (TSCs) was cultured in Matrigel, resulting in their self-organization into three-dimensional (3D) structures that 

progressed to the E5.5 developmental stage [3]. 

Since the initial breakthroughs in stem-cell-based embryo models, the methodology for constructing these models 

has undergone significant improvements. Recently, significant progress has been achieved in the establishment of 

standardized methodologies for cultivating stem-cell-based embryo models that faithfully replicate essential stages of 
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post-implantation human embryonic development. These intricate models traverse key phases, starting with pre-

gastrulation events where extra-embryonic compartments play a pivotal role as signaling hubs, guiding the precise 

specification of cell fate. They seamlessly progress through the establishment of polarity, the initiation of gastrulation, 

and ultimately reach stages reminiscent of the early phases of organogenesis [40–46] (depicted in Table 1). 

Moreover, Naive human pluripotent stem cells (PSCs) have demonstrated a fascinating capacity for self-

organization, giving rise to structures resembling blastocysts, referred to as blastoids [47–49]. These advancements 

demonstrate the versatility of stem cell types that can be used to generate ‘synthetic embryos’ [50] and further expand 

the potential applications of these models. Meanwhile, other species, such as bovine [51] and cynomolgus monkey [52], 

are becoming involved in the field of stem-cell-based embryo models. This diversification of species in ‘synthetic 

embryo’ research allows for a broader understanding of embryonic development across different organisms and the 

conservation or divergence of developmental mechanisms among them. 

Overall, the significant improvements in stem-cell-based embryo models have expanded the potential applications 

of these models for studying developmental processes, tissue engineering, and regenerative medicine. As the field 

continues to advance, researchers will be able to gain a deeper understanding of the complex interactions between 

signaling pathways and cellular behaviors during embryonic development, potentially leading to new therapeutic 

approaches and insights into the fundamental principles of biology. 

Table 1. Representative stem-cell-based embryo models (adapted from Oh et al. [53]). 

Organism Cell Type Culture Stage 

Human 

hEPSCs,  

hEPSC-derived TE-like 

cells 

AggreWell plates 

E6, can reach E7-14 in IVC system [54]; 

Peri-gastruloid, E8-11 [40]; 

E13-14 [45] 

Fibroblasts (+Sendai 

OKSM) 
AggreWell plates iBlastoid, E5-7 [48] 

naïve hPSCs derived from 

primed hPSCs 

AggreWell plates/non-adherent hydrogel 

microwell 
E6 (~40%) [55] 

Mouse 

ESCs, TSCs Agrose hydrogel microwell, Matrigel E5.5 [3] 

ESCs, TSCs, XENCs 
AggreWell plates/Suspension-shaking 

culture 
E5.5-7 [56,57] 

ESCs, iXENCs, iTSCs 
Agrose micro-tissue well / AggreWell 

plate + Ex utero culture 
E8.5 [58,59] 

Totipotent-like stem cells AggreWell plates E6.5 [60] 

Artificial morphogen replacement, such as the use of GFP morphogen gradients, is another approach in forward 

engineering patterning that replaces natural morphogens with artificial ones. This method has been demonstrated in 

studies by Stapornwongkul et al. and Toda et al. [61,62], which successfully established artificial GFP gradients to 

substitute natural morphogen gradients in Drosophila melanogaster wing imaginal discs and in vivo pattern formation. 

In the study by Stapornwongkul et al., the researchers engineered Tkv and Put receptors to bind GFP dimers by 

fusing them with anti-GFP nanobodies [61]. This allowed GFP to act as a morphogen instead of Dpp, rescuing wing 

development in Dpp-inactivated Drosophila larvae. The GFP signaling gradient was further expanded through the 

incorporation of non-signaling receptors, resulting in improved wing morphology in adult flies. 

Toda et al. introduced a novel system for pattern formation utilizing artificial GFP gradients [62]. They employed 

two non-competitive anti-GFP Nanobodies, with one acting as the anchor-binding domain and the other as the receptor-

binding domain. The receptor-binding domain was linked to a modified Notch receptor termed synNotch, which will be 

explained in detail later in Sec. 4.2.2. Upon simultaneous binding of GFP to both the anchor and receptor-binding domain, 

the synNotch receptor was activated, influencing downstream gene expression and enabling in vivo pattern formation 

through the establishment of predetermined GFP gradients. 

These studies demonstrate the potential of artificial morphogen replacement as a powerful tool for studying 

developmental processes and tissue engineering. By utilizing artificial morphogen gradients, researchers can gain 

valuable insights into morphogen signaling, gradient formation, and cellular responses. This approach could also help 

to advance synthetic biology, regenerative medicine, and the development of novel therapeutic strategies. 

4.2. Pattern Formation by Reverse Engineering  

4.2.1. Reaction-diffusion Patterning: AHL Quorum Sensing Circuit 

Using the principles of reverse engineering, Turing-like patterns can also be achieved through completely artificial 

circuits created from scratch. In a Science article by Liu et al. in 2011, a quorum-sensing circuit based on a small-
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molecule AHL (acyl-homoserine lactone) was established, allowing for bacterial patterning by controlling the motility 

of E. coli cells [4].  

The quorum-sensing system utilized in this study was initially discovered in Vibrio fischeri, where the gene luxI 

expresses the small molecule AHL, which is then secreted. When the extracellular concentration of AHL reaches a high 

level, AHL binds to the LuxR protein, forming an AHL-LuxR dimer that activates the expression of target genes [63]. 

Liu et al. employed AHL-LuxR to activate the expression of the repressor cI, which, in turn, repressed the expression 

of the bacterial motility-controlling gene cheZ. The low expression level of cheZ resulted in the bacteria remaining in 

a tumble state, thereby suppressing cell movement [64]. By manipulating this AHL-based quorum-sensing circuit, the 

researchers were able to engineer bacterial patterns reminiscent of Turing patterns. This work demonstrates the potential 

of synthetic biology to create artificial circuits that mimic natural pattern-forming processes. This approach not only 

expands our understanding of the fundamental principles governing pattern formation in biological systems but also 

opens up new possibilities for the development of novel strategies in the fields of synthetic biology, tissue engineering, 

and regenerative medicine. 

It is indeed important to highlight that the model in question, as presented by Liu et al., incorporates the 

consideration of nutrient concentration, as indicated in Figure 9A. However, it should be noted that the equation does 

not account for the chemotaxis of the nutrient gradient. This omission is a consequence of the engineered strain used in 

the study, wherein the original cheZ gene, responsible for chemotaxis, was intentionally deleted. As a result, the 

engineered strain lacks the capacity for chemotaxis.  

Notably, Figure 9C of the study depicts the control strain, which is expected to possess an intact cheZ gene. The 

presence of a condensed ring observed in the control strain aligns with the characteristic phenomenon of a chemotaxis 

ring [65]. The chemotaxis ring is a result of the bacteria’s response to the nutrient gradient, which causes the bacteria 

to move toward regions with higher nutrient concentrations. By deleting the cheZ gene in the engineered strain, the 

researchers effectively removed the chemotaxis behavior, allowing them to focus on the effects of the AHL-based 

quorum-sensing circuit on the bacterial patterning. This approach facilitated the study of the engineered circuit’s role 

in creating Turing-like patterns without the confounding effects of chemotaxis. 

 

Figure 9. Sequential patterning of E. coli with a quorum-sensing circuit of AHL sensing and motility control [4]. (A) The motility 

control circuit based on AHL quorum-sensing. (B) The establishment of a stripe pattern while the cell population expands. (C) The 

control strain without the quorum-sensing circuit cannot form a pattern (adapted from Liu et al. [4]). 

4.2.2. Cell–cell Contact Patterning: synNotch Signaling 

In a notable study published in 2016 by Morsut et al. in Cell, an artificial Notch signaling pathway known as 

“synNotch” was introduced [5]. The researchers established a modular synthetic Notch platform that enables 

customization of both the input and output by swapping the recognition domain and effector components (depicted in 

Figure 10A). Different from the morphogen gradient formed by diffusible GFP, the synNotch system relies on direct 

cell–cell contact signaling, meaning that free ligands cannot activate the receptor. This characteristic makes the 

synNotch system suitable for investigating signaling processes that specifically require cell–cell contact.  
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Additionally, the synNotch system incorporates a cis-inhibition mechanism, similar to that observed in natural 

Notch signaling [66]. This cis-inhibition feature allows the system to achieve both lateral activation and self-inhibition 

within a single genetic circuit. This capacity makes the synNotch system a powerful tool for studying the dynamics of 

cell–cell contact signaling and its role in tissue patterning, development, and homeostasis.  

As a versatile and customizable platform, the synNotch system has the potential to advance synthetic biology and 

tissue engineering by providing a framework for designing and implementing novel signaling pathways that can be 

tailored to specific applications. By combining the synNotch system with other synthetic biology tools and approaches, 

researchers can gain a deeper understanding of cell–cell contact signaling and its role in complex biological processes, 

ultimately leading to new therapeutic strategies and insights into fundamental principles of biology. 

 

Figure 10. The lateral activation circuit with synNotch bioparts [5,62]. (A) Direct cell–cell contact. The notch core will release the 

effector (shown as Gal4) when GFP binds to its receptor, then the effector will activate the expression of BFP. Only receiver cells 

in direct contact with sender cells will be activated for BFP expression. (B) Cell–cell contact mediated by artificial GFP gradient 

(refer to Section 4.1). The notch core will release the effector (shown as Gal4) only when free GFP binds to the anchor (shown as 

LaG2) of neighboring cells, which leads to the expression of mCherry. The activation of mCherry expression can be formed by a 

soluble GFP gradient (adapted from Morsut et al. [5] and Toda et al. [62]). 

5. Other Useful Biological Parts and Circuits 

5.1. For Prokaryotes 

5.1.1. SigI-RsgI Cell–cell Contact Signaling 

The SigI-RsgI pathway is currently the only known signaling pathway in prokaryotes that transduces signals 

through the cell membrane via autoproteolysis [67], resembling the Delta-Notch signaling mechanism observed in 

eukaryotes. Given its ability to facilitate cell–cell contact signaling in bacteria, the SigI-RsgI pathway holds great 

potential as a valuable circuit for patterning.  

Initially discovered in Clostridium thermocellum [68], the mechanism of the SigI-RsgI signaling has been recently 

elucidated. RsgI possesses an autoproteolytic activity within its periplasmic domain (PD) structure [6]. The auto-

cleavage of the β fragment results in the release of the N-terminal domain (NTD). Subsequently, the NTD is degraded 

by ClpXP, leading to the liberation and activation of the SigI protein, which was initially inhibited by the NTD. In its 

natural context, SigI activates the expression of cellulosomal genes (depicted in Figure 11). 
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Figure 11. The structure of RsgI, and the model of RsgI self-cleavage and signal transduction [6]. The binding of substrate to 

CBM/GH triggers the self-cleavage of PD-β1 in RsgI, which leads to the cleavage of NTD and release of SigI which affects the 

expression of the downstream target gene (adapted from Chen et al. [6]). 

As the SigI-RsgI pathway shares similarities with the Delta-Notch signaling mechanism in eukaryotes, it presents 

an opportunity for researchers to explore cell–cell contact signaling in prokaryotes. The study of this pathway could 

provide valuable insights into the evolution of cell–cell signaling mechanisms and the role of such pathways in cellular 

communication and tissue patterning. Additionally, understanding the SigI-RsgI pathway may lead to new strategies 

for engineering synthetic circuits in prokaryotes, with potential applications in biotechnology, environmental 

remediation, and bioenergy production. 

5.1.2. MinDEC System to Control Cell Division 

The MinDEC protein system is a widely studied example of gradient formation in E. coli. In vitro experiments 

have demonstrated that the MinDEC system is capable of generating oscillatory patterns [69]. In vivo, this system 

regulates the positioning of the Z-ring during cell division in bacteria. It involves the proteins MinE and MinD, which 

form a gradient to guide the proper placement of the Z-ring [70]. Importantly, it has been found that the presence of 

MinC is not necessary for the formation of the MinDE gradient [71].  

The MinD protein binds to ATP and the cytoplasmic membrane, where it forms a complex with MinC, an inhibitor 

of FtsZ polymerization. MinE stimulates the ATPase activity of MinD, causing it to release MinC and the membrane 

(depicted in Figure 12). This process leads to the formation of a MinDE gradient, which oscillates between the poles of 

the cell. 

The oscillatory behavior of the MinDE gradient ensures that the Z-ring, composed of FtsZ proteins, forms at the 

midcell, where the concentration of MinC is the lowest. The proper positioning of the Z-ring is crucial for accurate cell 

division and the generation of two identical daughter cells.  

 

Figure 12. The mechanism of MinDE gradient formation [70]. MinD and MinE achieve dynamic association and dissociation 

through ATP phosphorylation and dimerization, thereby causing oscillations (adapted from Ramm et al. [70]). 

Several studies have explored the manipulation of bacterial cell division to achieve pattern formation. Duran-Nebreda 

et al. successfully realized a periodic symmetry-breaking pattern by combining cell division control with quorum sensing. 

They utilized the MinC gene, an AHL quorum-sensing circuit, and the JunA gene, which regulates cell adhesion, to achieve 

this outcome [7]. These findings suggest that the unequal cell division controlled by the MinDE system could potentially 

give rise to symmetry-breaking patterns in bacterial colonies. The study by Duran-Nebreda et al. highlights the potential of 

integrating multiple cellular processes, such as cell division, quorum sensing, and cell adhesion, to generate complex 

patterns in bacterial populations. By exploiting the MinDE system’s role in controlling cell division and combining it with 

other genetic circuits, researchers can create bacterial strains with specific patterning properties. 



Synthetic Biology and Engineering 2023, 1, 10018 14 of 20 

 

5.1.3. Orthogonal Quorum-sensing Circuits 

In addition to AHL (acyl-homoserine lactone) quorum sensing, bacteria commonly employ quorum sensing 

mechanisms mediated by long-range diffusing small molecules. These molecules facilitate communication among 

bacterial cells, allowing them to coordinate their behavior and respond to changes in population density. Consequently, 

there exists a wide range of synthetase and receptor pairs that can be combined with AHL circuits, thereby enabling the 

design of more intricate and complex signaling networks. Some examples of these small molecules and their 

corresponding synthetase-signal molecule-receptor sets are listed in Table 2. 

By harnessing the diversity of quorum sensing mechanisms and incorporating them into synthetic gene circuits, 

researchers can design more sophisticated bacterial communication networks. These engineered networks can be 

utilized to investigate complex biological processes, create advanced microbial consortia, and develop novel therapeutic 

strategies. Moreover, the integration of multiple quorum sensing pathways can facilitate the construction of multilayered, 

hierarchical signaling systems that more closely mimic the complexity of natural systems. 

Table 2. Quorum-sensing circuits in bacteria (adapted from Papenfort and Bassler [72]). 

Synthetase Signal Molecule Receptor Organism 

LuxI/RpaI 

C4-HSL RhIR [73] Pseudomonas aeruginosa 

3OH-C4-HSL LuxN [74] Vibrio harveyi 

Isovaleryl-HSL BjaR [75] Bradyrhizobium japonicum 

3-oxo-C12-HSL LasR Pseudomonas aeruginosa 

cinnamoyl-HSL BraR [76] Bradyrhizobium 

p-coumaroy-HSL RpaR[77] Rhodopseudomonas palustris 

PhcB 
3-OH PAME, 

(R)-3-OH MAME 
PhcS Ralstonia 

RpfF DSF RpfC Xanthomonas campestris 

CqsA CAl-1 CqsS 
V. harveyi , 

V. cholerae 

Ppys PPYs PluR Photorhabdus luminescens 

DarABC DARS PauR Photorhabdus asymbiotica 

PqsABCDH PQS PqsR Pseudomonas aeruginosa 

LuxS DPD 
LuxP/Q Vibrios 

LsrB E. coli 

The orthogonality of quorum-sensing circuits based on homoserine lactone (HSL) molecules has been a subject of 

investigation. Studies have shown that LuxR and LasR receptors exhibit responsiveness to various HSL molecules, 

whereas the BjaR receptor demonstrates a relatively higher degree of orthogonality compared to other HSL quorum-

sensing circuits [78]. This orthogonality property allows for the independent and specific control of different quorum 

sensing circuits, facilitating the construction of more tailored and versatile synthetic biological systems.  

Orthogonality is a crucial aspect when designing synthetic biological systems, as it enables the coexistence of 

multiple genetic circuits within the same cell or population without interfering with each other’s function. By identifying 

and utilizing orthogonal receptors and HSL molecules, researchers can create more complex and sophisticated genetic 

circuits that can be independently controlled. 

For example, orthogonal quorum sensing systems can be used to create multi-layered regulatory networks where 

the activation of one circuit depends on the output of another. This can lead to the development of more advanced 

synthetic biology applications, such as microbial consortia that perform multiple tasks in a coordinated manner or 

engineered bacteria that can respond to specific combinations of environmental cues [79].  

Furthermore, the identification and characterization of orthogonal quorum sensing systems can improve our 

understanding of how natural bacterial populations maintain the specificity of their communication channels despite the 

presence of numerous signaling molecules in their environment. This knowledge can be applied to the development of 

novel antimicrobial agents that target specific quorum sensing pathways, as well as strategies to mitigate the spread of 

antibiotic resistance and virulence factors in bacterial populations. 

5.2. For Eukaryotes 

5.2.1. Auxin Quorum-sensing Circuit 

In the recent publication by Ma et al. in 2022, an artificial quorum-sensing signaling system based on auxin was 

introduced. Auxin, a plant hormone, serves as the signaling molecule that communicates the cell population state in this 

circuit. The receiver cell detects the presence of auxin in its environment, and upon binding of auxin to the auxin-

inducible degron (AID) and osmotic stress-induced receptor 1 (osTIR1), it triggers the assembly of the SCF (Skp1-
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Cullin-F-box) complex. This complex, in turn, induces the degradation of the target protein BlastR (depicted in Figure 

13) [8].  

This innovative approach demonstrates the potential for employing non-traditional signaling molecules, such as 

auxin, in designing synthetic quorum-sensing circuits. By utilizing auxin, which is not native to bacterial 

communication systems, the authors were able to create a signaling pathway that is orthogonal to endogenous bacterial 

quorum-sensing systems. This allows for more precise control and manipulation of the engineered circuit without 

interference from native cellular processes.  

The auxin-based quorum-sensing system developed by Ma et al. can serve as a foundation for further exploration 

of alternative signaling molecules and their potential applications in synthetic biology. The incorporation of non-native 

signaling molecules can expand the toolbox for designing more complex and sophisticated genetic circuits, enabling 

the development of engineered bacteria with novel functions and capabilities. Additionally, the study highlights the 

potential for cross-disciplinary research, as it demonstrates the successful integration of a plant hormone into a bacterial 

communication system. 

 

Figure 13. The artificial auxin quorum sensing circuit in mammalian cell. The concentration of auxin or auxin precursor regulates 

the survival of cell by binding to AID and osTIR1, which causes the degradation of BlastR via ubiquitination (adapted from Ma et 

al. [8]). 

Auxin is known for its high diffusion coefficient, which poses challenges for creating spatial patterns in liquid 

mammalian cell culture mediums. However, the study by Ma et al. demonstrates that auxin can form a gradient in low-

melting-point agarose, thus enabling the patterning of cells cultured within similar hydrogels [8]. 

The ability to create spatial patterns and gradients using auxin in hydrogels opens up new opportunities for tissue 

engineering and regenerative medicine applications. By embedding cells within hydrogels and exposing them to auxin 

gradients, researchers can control the spatial organization and differentiation of cells, potentially leading to the 

formation of complex, multi-cellular structures that mimic native tissues.  

Furthermore, the use of auxin gradients in hydrogels can also be applied to study cell migration, chemotaxis, and 

cellular responses to environmental cues. Such investigations can provide insights into the mechanisms underlying 

tissue development, wound healing, and disease progression in more complex, multicellular systems.  

Overall, the findings by Ma et al. not only demonstrate the potential of using non-traditional signaling molecules 

like auxin in synthetic biology but also reveal new avenues for exploring spatial patterning and organization in 

mammalian cell culture systems using hydrogels and other similar materials. 

5.2.2. Diffusible RNA Exporter 

Horns et al., in their recent study, presented an artificial RNA exporter system capable of facilitating cell–cell RNA 

delivery. This system involves the assembly of RNA-binding proteins, self-assembling capsids, fusogens, and RNA 

cargo labeled with an export tag. The modular nature of the RNA exporter system, known as COURIERs 

(Communication Using RNA Import-Export Relays), allows for the potential delivery of customized mRNA signals 

within a cell population [80].  

The study demonstrated the feasibility of cell–cell RNA delivery using the diffusible RNA exporter system. 

However, it is important to note that the diffusion coefficient of the specific RNA exporter used in the study (EPN24-

MCP) was not measured. Additionally, the ability of the RNA exporter to diffuse within a hydrogel environment 
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remains unknown. Further research is needed to investigate these aspects and determine the diffusion properties of the 

RNA exporter under different conditions.  

Understanding the diffusion properties of the RNA exporter system will be crucial for its application in synthetic 

biology and tissue engineering. The ability to control the diffusion and spatial distribution of RNA signals could enable 

the creation of more complex and dynamic cellular communication networks, as well as the development of novel 

therapeutic strategies for targeted gene delivery and regulation.  

Furthermore, exploring the compatibility of the RNA exporter system with different hydrogel environments could 

provide valuable insights into its potential use in three-dimensional (3D) cell culture systems and tissue engineering 

applications. By combining the RNA exporter system with hydrogel-based cell culture platforms, researchers may be 

able to design more sophisticated and controlled multicellular systems that mimic native tissue structures and functions. 

5.3. Subcellular Regulation 

Synthetic Biomolecular Condensates 

Pattern formation in biological systems often involves changes in gene expression levels within individual cells. 

Therefore, incorporating bioparts related to subcellular regulation can be valuable for designing pattern formation 

networks. Synthetic biomolecular condensates, which are artificially designed bioparts, offer a means to introduce 

symmetry breaking within cells [9].  

The synthetic condensate protein module consists of three essential components. First, a synthetic intrinsically 

disordered protein (synIDP), which is a resilin-like polypeptide (RLP), acts as a zwitterionic domain to drive the 

condensation process. Second, a helix-turn-helix DNA-binding domain (DBD) derived from the ParB-parS system [81] 

enables specific DNA sequence binding. Lastly, a C-terminal dimerization domain (DD) enhances phase separation 

coupled with percolation. Phase separation occurs only when the DBD binds to its target DNA sequence, resulting in 

the encapsulation of the plasmid within the protein condensate (depicted in Figure 14). This can lead to plasmid 

sequestration or transcriptional regulation [9].  

By integrating these synthetic biomolecular condensates into cellular systems, it becomes possible to introduce 

spatial organization and symmetry-breaking effects, enabling the design of pattern formation networks with precise 

control over gene expression and cellular behavior. These condensates can be used to create localized regions within 

cells where specific biochemical reactions or processes occur, mimicking the compartmentalization found in natural 

biological systems. This enables the fine-tuning of cellular processes, such as signal transduction, gene expression, and 

protein synthesis, in response to external or internal stimuli. 

Additionally, the use of synthetic biomolecular condensates can provide new opportunities for studying the 

principles of pattern formation and self-organization in living systems. Understanding the mechanisms that govern these 

processes can lead to the development of more advanced synthetic biology tools and applications, including tissue 

engineering, regenerative medicine, and the creation of artificial life forms. Moreover, the ability to manipulate 

subcellular organization using biomolecular condensates can also enhance our understanding of cellular processes and 

contribute to the development of novel therapeutic strategies for treating diseases related to cellular dysfunction. 

 

Figure 14. The structure and mechanism of synthetic biomolecular condensates. The structure of synIDP-DBD-DD binds to target 

sequence of plasmids while driving the phase transition process, thereby causing the encapsulation of the plasmids in the protein 

condensate (adapted from Dai et al. [9]). 

6. Conclusions 

In conclusion, advancements in biology and computer science from the 1950s to the 21st century have deepened 

our understanding of multicellular organism development, inspiring a wide range of synthetic biology tools. Genetically 
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engineered circuits are now capable of mimicking many naturally occurring forms of self-organization, aligning with 

the idea expressed by Michael Elowitz and Wendell A. Lim: “build life to understand it” [18]. 

With the aid of physical models and synthetic biology tools, it is now possible to design and realize more intricate 

and complex patterns in both eukaryotic and prokaryotic systems. However, creating functional patterning circuits or 

networks in the wet lab is still challenging due to the numerous parameters involved and the difficulty in adjusting them.  

To overcome these challenges, the strategy for designing circuits or networks may need improvement. Using 

numerical simulations to assist wet lab experiments can help reduce the need for extensive parameter adjustments of 

biological parts and circuits. For different patterning goals, selecting a network capable of forming the desired pattern 

in silico and then choosing suitable bioparts based on the required parameter range of the network is a more efficient 

approach.  

To implement this process, it is crucial to measure the parameters of existing bioparts and their interactions with 

each other, necessitating the establishment of a comprehensive biopart library [82]. While there are already biopart 

databases integrating information from various biopart libraries worldwide, they do not typically include reaction 

parameters of bioparts. Integrating the reaction parameters of existing bioparts into these databases would greatly 

facilitate the modular design of patterning networks and other genetic circuits. This will ultimately advance the field of 

synthetic biology and help pave the way for more complex and sophisticated applications in areas such as tissue 

engineering, regenerative medicine, and the creation of artificial life forms. 
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