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ABSTRACT: Digital twin technology develops virtual models of objects digitally, simulating their real-world behavior based on data. 

It aims to reduce product development cycles and costs through feedback between the virtual and real worlds, data fusion analysis, and 

iterative decision-making optimization. Traditional manufacturing processes often face challenges such as poor real-time monitoring 

and interaction during machining, difficulties in diagnosing equipment failures, and significant errors in machining. Digital twin 

technology offers a powerful solution to these issues. Initially, a comprehensive review of the research literature was conducted to 

assess the current research scope and trends. This was followed by an explanation of the basic concepts of digital twins and the technical 

pathway for integrating digital twins into intelligent manufacturing including outlining the essential technologies for creating a system 

of interaction between the virtual and real worlds, enabling multimodel fusion, data sensing, algorithm-based prediction, and intelligent 

decision-making. Moreover, the application of digital twins in intelligent manufacturing throughout the product life cycle was 

detailed, covering product design, manufacturing, and service stages. Specifically, in the manufacturing phase, a model based on 

heat conduction theory and visualization was used to construct a time-varying error model for the motion axis, leading to 

experiments predicting the time-varying error in the hole spacing of a workpiece. These experiments achieved a minimum prediction 

error of only 0.2 μm compared to the actual error. By compensating for time-varying errors in real time, the variability in the hole 

spacing error decreased by 69.19%. This paper concludes by summarizing the current state of digital twins in intelligent manufacturing 

and projecting future trends in key technologies, application areas, and data use, providing a basis for further research. 

Keywords: Digital twin; Intelligent Manufacturing; Machining; Sustainable manufacturing 
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1. Introduction 

There has been a growing need to transform the traditional manufacturing industry due to the rising demand for 

digital, networked, and intelligent development. This increasing complexity in disciplines related to mechanical product 

upgrading, manufacturing, and operation and maintenance necessitates close collaboration [1–3]. Different countries, 

such as Germany’s “Industry 4.0,” the United States’ “Industrial Internet,” and China’s “Made in China 2025,” have 

proposed advanced manufacturing development strategies. Currently, the focal point of transformation and upgrading 

in the machinery manufacturing industry is the digitalization and intelligence of the mechanical process system [4]. 

In the context of Industry 1.0 and Industry 2.0, the research and development phase relies on drawings, and traditional 

manufacturing systems use raw materials, parts, and components that are produced through various processes such as 
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machining and assembly. To ensure accuracy in terms of structure, ergonomics, and performance, physical prototypes are 

assembled to validate the virtual model. However, the cost of this validation process is prohibitively high [5]. 

In Industry 3.0, software providers have introduced concepts such as virtual prototyping, digital prototyping, and 

active prototyping [6]. Digital prototyping replaces physical prototypes by using information modeling, providing a 

preview of the product [7]. Among the various digital prototyping concepts, digital modeling, which emphasizes 

complex mapping and contextual relationships between 3D model simulations, is widely used. The use of digital 

prototypes significantly reduces the need for physical prototypes, minimizing failure rates. Virtual simulations based 

on physical manufacturing processes enable early assessment of intelligent manufacturing system (IMS) performance, 

leading to a reduction in reconfiguration costs/losses during physical prototyping of IMS. The incorporation of virtual 

reality greatly enhances the ease and efficiency of IMS design [8]. Furthermore, the transfer of information in digital 

prototypes ensures consistency, thereby streamlining manufacturing system design [9–11]. 

Industry 4.0 has propelled intelligent manufacturing as the future direction for the global manufacturing industry 

[12]. The adoption of new national advanced manufacturing strategies worldwide has resulted in an increased demand 

for the design of new IMS [13–16]. An IMS is a multidomain physical system comprising intelligent machines, 

materials, products, and complex couplings between various components [17–21]. In the digital design process, an IMS 

can be broken down into digital models at various levels of granularity in a digital space, while physical products and 

manufacturing processes exist in a separate physical space [22]. The design process of IMS relies heavily on high-

fidelity network models that bridge the gap between the design and operational domains [23–25]. 

1.1. Necessity of Digital Twins 

There are several challenges in the traditional machining process, including difficulties in collecting dynamic data 

during processing, limited methods for monitoring the process, and poor interactivity. The complex equipment structure 

also leads to troubleshooting difficulties, while the debugging cycle is lengthy and costly. Additionally, predicting 

multifactorial machining errors and determining optimal machining parameters are hindered by the reliance on artificial 

experience and the randomness and uncertainty of the process. Furthermore, finding optimal machining parameters 

consumes a large amount of material and is inefficient. These issues have been recognized [26–30].  

In response to these challenges, digital transformation based on mechanical process systems has shown early 

success. For example, algorithms have been developed to monitor machining states, diagnose machinery faults, predict 

machinery life, forecast machining errors, and optimize machining parameters [31–33]. However, there are still several 

limitations, such as poor interactivity and visualization of the machining process, the reliance on various algorithms 

with individual weaknesses, and the complexity and ambiguity of the optimization process. Multimodel fusion is also 

not well adapted, and most algorithm training is based on historical and empirical data, resulting in limited real-time 

utilization of data. 

As a solution to these limitations, digital twin (DT) technology has emerged. This technology maps physical 

entities to the digital realm, enabling real-time feedback on processing states and facilitating interaction between virtual 

and real mechanical process systems [34,35]. By employing artificial intelligence algorithms and multimodel fusion 

applications, DT technology can predict processing states, forecast equipment failures, and optimize process parameters. 

It achieves these goals through data perception, analysis, prediction, and intelligent decision-making, ultimately 

optimizing product quality and processing resource allocation [36,37]. 

The increasing popularity of DT reflects the inevitable trend of virtual and physical worlds becoming more 

interconnected and integrated. Grieves’ concept of “virtual, digital physical products” and the utilization of DT by 

NASA and the Air Force Research Laboratory mark significant breakthroughs in overcoming limitations [8]. Siemens 

applied DT to Industry 4.0 in 2016, leading to exponential growth in related publications as more researchers dedicated 

themselves to DT [38]. Tao et al. [39] proposed the concept of a DT workshop, providing theoretical support for 

manufacturing applications by discussing its characteristics, composition, operation mechanism, and key technologies. 

To further promote the application of DTs in various domains, Tao et al. [40] extended the existing three-dimensional 

DT model to propose a five-dimensional DT model. Figure 1 illustrates some milestones in DT development. 
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Figure 1. The milestones of DT development. 

This article focuses on DT-enabled intelligent manufacturing as the research subject. First, a qualitative and 

quantitative survey of the literature is conducted, and bibliometric analysis of publication sources, annual publication 

volumes, main publication regions, keyword frequency, and highly cited papers is performed. This analysis identifies 

the current scope and trends of related research. Second, the concept and connotation of DTs are introduced, and the 

knowledge graph and application framework of DT-enabled intelligent manufacturing are mapped out. Both the 

technological paths and core technologies of the key technologies are analyzed, with a particular focus on summarizing 

the technological architecture and hierarchical systems. This article elaborates on the development and application of 

related technologies such as virtual system development, DT model construction, data perception and analysis, decision-

making, and intelligent decision-making. Furthermore, it summarizes the applications of DT-enabled intelligent 

manufacturing throughout the product lifecycle, including product planning, virtual commissioning, processing 

monitoring, predictive equipment maintenance, and processing technology evaluation. Finally, it concludes and 

provides prospects for the current status and future development directions of DT-enabled intelligent manufacturing, 

aiming to serve as a reference for subsequent development. 

2. Methodology 

To gain a deeper understanding of the research trends and progress in DT-enabled intelligent manufacturing, this 

section utilizes two research methods: bibliometric analysis and rooted theory analysis. Bibliometric analysis allows for 

a systematic examination and measurement of thematic structure, hotspots, trends, and other pertinent information from 

multiple perspectives. By utilizing bibliometric theory, this section provides an in-depth analysis of DT-enabled 

intelligent manufacturing by examining the number and trends of publications, research frontiers and hotspots, and 

research evolution lineages. Additionally, this section incorporates the idea of rooting and constructs a theoretical 

framework for DT-enabled intelligent manufacturing research by extracting, categorizing, and integrating keywords, 

abstracts, and research content from relevant literature. 

2.1. Literature Search 

The aim of this work is to explore DT-enabled intelligent manufacturing. Despite previous in-depth investigations 

and related applications conducted by numerous scholars, the concept of DTs in the machining process remains vague. 

Therefore, a literature search on DT-enabled intelligent manufacturing was conducted to organize the related work. The 

methodology is as follows: 
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(1) Bibliometric analysis was performed by identifying papers based on titles, abstracts, and keywords from the Web 

of Science (WOS) core database. 

(2) Recent developments in the literature were reviewed based on the most important keywords. Key themes such as 

the origin, development, key technologies, and implementation architectures of DTs were identified. The 

chronological order was determined, and common definitions and characterization principles were qualitatively 

assessed for similarity. 

(3) Keyword frequencies were listed, common key techniques were evaluated, and examples were reviewed for further 

comprehension. 

(4) By analyzing the information provided by highly cited literature, a macrolevel understanding of the overall 

evolution of DT-related research can be obtained. 

2.2. Bibliometric Analysis 

Bibliometric analysis assesses current trends in the research literature, offering a comprehensive overview and 

structure of the field and providing insights and motivations for future research [41–43]. The analytical process of 

bibliometrics consists of four main steps: search query, dataset identification, data analysis, and data visualization. 

Using the WOS core database and the keywords {“digital twin” AND “manufacturing”} AND {“cutting OR machining”}, 

it was discovered that DT-enabled intelligent manufacturing has been emerging since approximately 2010 and has 

experienced steady growth, particularly in the last 10 years. Since articles from 2024 are still in the publication process, 

the search publication years were set from 2013-1-1 to 2023-12-31. A total of 681 papers related to DTs were obtained. 

2.2.1. Number of Annual Publications 

The initial conceptual model of DTs was first explicitly proposed in 2002. Since then, both foreign and domestic 

academics have conducted extensive research on DTs covering various topics. An analysis of the literature and trends 

in foreign and domestic DT-driven machining research literature after 2013 is illustrated in Figure 2. As shown in Figure 

2, there has been a consistent increase in the overall literature on foreign and domestic DT-driven machining research, 

with a rising trend every year. This indicates a growing interest in domestic and foreign research on DTs in recent years. 

 

Figure 2. Publishes articles per year. 

2.2.2. Distribution of Relevant Literature 

Through a literature analysis, we filtered out the top 20 countries/regions with the greatest number of publications 

since 2013. These findings are presented in Table 1. China has the largest number of publications, totaling 259 papers 

related to DT-enabled intelligent manufacturing. The United States is in second place with 96 papers, followed by 

Germany with 61 papers. Notably, these three countries accounted for 61.1% of the total publications. It should be noted 

that China, the United States, and Germany have placed significant emphasis on DT-enabled intelligent manufacturing 

as part of their national manufacturing programs or initiatives. The United Kingdom, Italy, and South Korea occupy the 

4th, 5th, and 6th positions, respectively. 
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Table 1. Major countries/regions that publish DTs in the WoS database. 

Country/Region Ranking Count 

China 1 259 

USA 2 96 

Germany 3 61 

England 4 61 

Italy 5 40 

South Korea 6 35 

Spain 7 27 

Australia 8 26 

Canada 9 23 

Singapore 10 23 

Sweden 11 23 

India 12 22 

France 13 20 

Greece 14 16 

Denmark 15 15 

New Zealand 16 14 

Japan 17 13 

Portugal 18 9 

Pakistan 19 8 

Austria 20 8 

To analyze the cooperation between publishing countries/regions, we utilized the information visualization tool 

VOSviewer. Figure 3 presents the country/region interconnection diagram, with the radius of the circular coordinate 

points indicating the number of published papers and the thickness of the connecting lines representing the level of 

cooperation. For clarity, only countries/regions with more than 10 published papers were considered in this analysis. 

The results reveal that China, the United States, the United Kingdom, and South Korea have the most collaborations in 

the field of DT-enabled intelligent manufacturing. 
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Figure 3. Country/region correlation map of research related to DT-enabled intelligent manufacturing. 
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2.2.3. Primary Journal Sources 

A survey of the WoS database identified the main sources of DT-driven machining publications, as shown in Table 

2. Sensors has emerged as the journal with the greatest number of publications on DT-driven machining, closely 

followed by IEEE Access and Applied Sciences-Basel. The top eight journals all published 30 or more articles on DT-

enabled intelligent manufacturing. In terms of the journal impact factor, the Journal of Manufacturing Systems is among 

the top 15 journals, with a factor of 12.1. 

A survey of the core databases of WoS reveals the main sources of publications on DT-enabled intelligent 

manufacturing, as displayed in Table 2. The International Journal of Advanced Manufacturing Technology leads the 

pack with the highest number of publications, closely followed by the Journal of Manufacturing Systems and Applied 

Sciences-Basel. The top six journals all have over 30 publications on DT-enabled intelligent manufacturing. In terms 

of the journal impact factor, the IEEE Transactions on Industrial Informatics tops the list among the top 15 journals, 

with a factor of 12.3. 

Table 2. Statistics on DT-driven machining publications. 

Journal Ranking Count 

International Journal of Advanced Manufacturing Technology 1 59 

Journal of Manufacturing Systems 2 52 

Applied Sciences-Basel 3 33 

Journal of Intelligent Manufacturing 4 33 

Robotics and Computer-Integrated Manufacturing 5 33 

Sensors 6 31 

IEEE Access 7 24 

CIRP Annals-Manufacturing Technology 8 19 

International Journal of Computer Integrated Manufacturing 9 18 

International Journal of Production Research 10 18 

Advanced Engineering Informatics 11 17 

Computers in Industry 12 16 

Processes 13 11 

Machines 14 10 

IEEE Transactions on Industrial Informatics 15 7 

2.2.4. Analysis of Highly Cited Papers 

The frequency of citations a paper receives reflects its scientific value and research significance. Table 3 presents the 

top 15 cited papers related to DT-enabled intelligent manufacturing from 2013 to 2023. The most cited paper is Tao et 

al.’s [38] paper titled “DT in Industry: State-of-the-Art,” published in 2019 in the IEEE Transactions on Industrial 

Informatics. This paper provides a comprehensive overview of DT research in the context of intelligent manufacturing, 

examining key components, development status, main applications, current challenges, and future directions. Other highly 

cited papers are listed in Table 3. From the table, it is evident that highly cited papers on DTs mostly focus on intelligent 

manufacturing and are increasingly recognized as crucial drivers for achieving intelligent manufacturing in the future. 

2.2.5. Keyword Analysis 

Research hotspots are crucial for understanding the development trends within a particular field. By importing 

relevant data from the WoS core database into the visualization tool VOSviewer, high-frequency keywords can be 

analyzed to identify research hotspots. Figure 4 presents a co-occurrence map of high-frequency keywords related to 

DT-enabled intelligent manufacturing research. Only terms appearing more than 10 times were considered to ensure 

network clarity. 

From the perspective of keyword distribution, this research primarily focuses on machine learning, models, 

frameworks, and related topics. By examining the correlation between these keywords, it is found that keywords such 

as machine learning, system, model, framework, design, prediction, and data analytics frequently appear in the context 

of DTs. The frequency of keyword usage reflects the common concepts or technologies in DTs. Section 3 reviews and 

discusses the common concepts of DT-enabled intelligent manufacturing, frequently mentioned frameworks, and the 

key enabling technologies for DTs. The keyword analysis highlights the use of DT as a crucial enabling technology for 

intelligent manufacturing. As research progresses, DT will not be limited to technology alone but will include the entire 

lifecycle of the enterprise, involving aspects such as management, manufacturing, sales, and services. 
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Figure 4. DT-enabled intelligent manufacturing keyword contribution mapping. 
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Table 3. Statistics of highly cited papers on DT-driven machining. 

Rank Author Title Journal Citations Year 

1 Tao et al. [38] Digital Twin in Industry: State-of-the-Art IEEE Transactions on Industrial Informatics 1189 2019 

2 Fuller et al. [44] Digital Twin: Enabling Technologies, Challenges and Open Research IEEE Access 541 2020 

3 Alcacer et al. [45] 
Scanning the Industry 4.0: A Literature Review on Technologies for 

Manufacturing Systems 

Engineering Science and Technology-an 

International Journal-Jestech 
479 2019 

4 Qi et al. [46] Enabling technologies and tools for digital twin Journal of Manufacturing Systems 440 2021 

5 Maddikunta et al. [47] Industry 5.0: A survey on enabling technologies and potential applications Journal of Industrial Information Integration 394 2022 

6 Barricelli et al. [48] 
A Survey on Digital Twin: Definitions, Characteristics, Applications, and 

Design Implications 
IEEE Access 389 2019 

7 Jin et al. [49] 
Triboelectric nanogenerator sensors for soft robotics aiming at digital twin 

applications 
Nature Communications 312 2020 

8 Cimino et al. [50] Review of digital twin applications in manufacturing Computers in Industry 309 2019 

9 Lim et al. [51] 
A state-of-the-art survey of Digital Twin: techniques, engineering product 

lifecycle management and business innovation perspectives 
Journal of Intelligent Manufacturing 262 2020 

10 Wei et al. [52] Mechanistic models for additive manufacturing of metallic components Progress in Materials Science 259 2021 

11 Zhang et al. [53] 
Review of job shop scheduling research and its new perspectives under 

Industry 4.0 
Journal of Intelligent Manufacturing 257 2019 

12 Liu et al. [54] 
Digital twin-driven rapid individualised designing of automated flow-shop 

manufacturing system 
International Journal of Production Research 228 2019 

13 Minerva et al. [55] 
Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, 

and Architectural Models 
Proceedings of the IEEE 205 2020 

14 Leng et al. [5] 
Digital twins-based smart manufacturing system design in Industry 4.0: A 

review 
Journal of Manufacturing Systems 204 2021 

15 Luo et al. [56] 
A hybrid predictive maintenance approach for CNC machine tool driven by 

Digital Twin 

Robotics and Computer-Integrated 

Manufacturing 
203 2020 
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3. Overview of Digital Twins in Intelligent Manufacturing 

DT technology combines the physical world with the digital world, using real-time and historical data to model, 

simulate, and analyze physical objects. Its objective is to optimize performance, improve reliability, and reduce 

maintenance costs. This section first examines the history of the DT concept and then analyzes its five-level architecture 

in DT-enabled intelligent manufacturing. Finally, the key enabling technologies for DT-enabled intelligent manufacturing 

are introduced. 

3.1. Definition of Digital Twins 

In recent years, DT has increasingly been recognized as a crucial innovative technology for intelligent 

manufacturing, driving its development [57]. A DT is a virtual representation that creates and simulates a physical entity, 

process, or system within an information technology platform. By utilizing DTs, the state of physical entities can be 

understood on the information technology platform, and predefined interface components within the physical entity can 

be controlled [58–60]. The concept of DTs was first proposed by Professor Grieves in the United States in 2002. In 

approximately 2010, the U.S. aerospace industry adopted DT technology, building upon model-based systems 

engineering and the advancement of the Internet of Things (IoT). Currently, DTs are recognized as excellent solutions 

for intelligent manufacturing, and extensive research has been conducted by scholars globally. DT technology has also 

made significant breakthroughs in engineering applications, making it a vital technical pillar for realizing intelligent 

manufacturing and industry 4.0. 

Since the advent of DTs, scholars have attempted to define DTs in the context of product design, manufacturing, and 

total lifecycle management. However, due to the diverse range of physical objects involved in manufacturing systems, it 

is challenging to provide a specific definition. Different DT models must be tailored to specific physical objects, such as 

workpieces, manufacturing equipment, factories, and employees, based on their unique structures, functional requirements, 

and modeling strategies. Table 4 presents relevant definitions of DTs in both academia and industry. 

Table 4. Definition of DTs. 

Definition Refs. 

DTs are digital copies of biological or non-biological physical entities. By connecting the physical 

and virtual worlds, data can be transferred seamlessly, allowing virtual entities to coexist with 

physical entities. 

Abdulmotaleb et al. 

[61] 

DTs use physical data, virtual data, and the interaction between them to map all components of the 

product lifecycle. 
Tao et al. [62] 

By integrating design/simulation, manufacturing and usage, the Product DT is able to visualize the entire 

product business process, plan details, avoid problems, close loops and optimize the entire system. 
Zhuang et al. [63] 

A coupled model of real machines running on a cloud platform that uses a combination of data-

driven analysis algorithms and other available physics knowledge to simulate health conditions. 
Lee et al. [64] 

Real-time optimization using digital copies of physical systems. Söderberg et al. [65] 

DTs are virtual information structures that comprehensively describe potential production or actual 

manufactured products from the micro-atomic level to macro-geometry. 
Grieve et al. [66] 

DT is a comprehensive digital representation of a single product, a model that simulates its actual 

behavior in a real environment through models and data. 
Haag et al. [67] 

DT is a technology that adds or extends new capabilities to physical entities through virtual-real 

interaction feedback, data fusion analysis, and iterative decision optimization. 
Li et al. [68] 

3.2. Digital Twin Framework 

The DT framework utilizes extensive data from the machining process as a foundation. Using virtual simulation, 

artificial intelligence, and other technologies in the virtual space, a DT of the mechanical process system is constructed. 

This enables mapping, prediction, optimization, and other functionalities related to the physical entity [69]. This section 

explores the intelligent manufacturing hierarchy enabled by DTs, with a focus on its architecture. 

DT technology is a crucial tool for integrating virtual and real interactions, thereby advancing the development of 

the manufacturing industry. For instance, applying DTs to the process planning of aviation parts involves constructing 

a data- and mechanism-driven process planning framework. This framework includes four key enabling technologies: 

a mechanism-data fusion DT model, a dynamic process knowledge base, process decision-making and evaluation, 

process quality prediction, and process feedback optimization. The framework is validated through an example of 

overall impeller process planning for a miniature turbojet engine [70]. Another example is the application of DT 
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technology in the development of aero-engines. This involves unifying the data storage and management platform to 

overcome information silos and enhance data utilization. Additionally, it accelerates the iteration-verification speed, 

reducing the test time and enhancing the efficiency. Moreover, it breaks down the barriers of traditional simulation 

through multidisciplinary fusion, effectively improving accuracy [71]. Building on these cases, this section describes 

the capabilities of visual presentation, analysis and diagnosis, learning and prediction, and intelligent decision-making in 

mechanical product processing. This is achieved through data acquisition, storage, processing, virtual system construction, 

and algorithmic modeling of the mechanical process system. Importantly, these applications span the entire product 

lifecycle [72]. In this section, an architecture for the DT-enabled intelligent manufacturing hierarchy is constructed, 

comprising the physical layer, data layer, model layer, functional layer, and application layer, as illustrated in Figure 5. 

The physical layer includes various components of the production process, which can be summarized as the 

human‒machine-object-environment relationship. These factors include the operator, machine tools, data sensing 

devices, processing environments, internal logical relationships of equipment, information flow, and other relevant 

factors. The physical layer provides technical support for the data layer. The data layer primarily focuses on data 

perception, storage, and processing. Data perception involves real-time data, mechanism data, process data, historical 

data, etc. Data storage is achieved through the establishment of processing databases and DT model databases. Data 

processing encompasses twin model construction, parameter optimization, and other functions. The data layer supports 

the model layer by providing the necessary data [73].  

The model layer is the central layer of the DT and is divided into mechanism models and data-driven models. Its 

key components include model construction, calibration, fusion, and optimization. The model layer provides support 

for the functional layer [74–76].  

The functional layer refers to the implementation of intelligent manufacturing enabled by DTs. It achieves process 

system visualization, analysis and diagnosis, learning and prediction, intelligent decision-making, and other functionalities 

through single or multimodel coupling. The functional layer provides system support for the application layer. 

The application layer involves the full life cycle management of products and relies on the functional layer for 

related support. It covers various aspects, such as product design, manufacturing, and service phases. This includes 

technology management, product design definition, equipment maintenance, and end-of-life/recycling. 

Hierarchical Architecture for Digital Twin Driven Mechanical Process Systems

Product design 

Application layer Functional layer Model layer Data layer Physical layer

Product manufacturing

Product service

Analytic diagnose

Learning prediction

Intelligent decision

Multidimensional model

Mechanistic model

Data model

Data awareness

Data storage

Data process

Human

Machine

Environment

 

Figure 5. Hierarchical architecture of DT-enabled intelligent manufacturing. 

3.3. Key Enabling Technologies 

The core technologies of DT-enabled intelligent manufacturing include data sensing and processing technology, 

high-fidelity modeling technology, and model-based simulation technology [77,78]. This section examines the 

development and application of virtual systems based on DTs, model construction, data perception, analysis and 

prediction, intelligent decision-making, and other technologies, as shown in Figure 6. Among these technologies, the 

development of a virtual system provides a necessary foundation for the establishment of a DT model. The construction 

and application of the model, on the other hand, provides theoretical support for virtual system construction. 

Additionally, data perception, analysis and prediction, and intelligent decision-making contribute to the static attributes 

of the physical system and related parameters, such as machine tool parameters, workpiece parameters, cutting tool 

parameters, and fixture parameters. Furthermore, these technologies provide data support for model training, including 

empirical data and historical data, of the mechanical process system. 
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Model building Model merging

Model evaluation

Development of virtual system

Application of virtual system

Data perception Intelligent decision

Analytical prediction

related parameters

 real-time data

 

Figure 6. Core technology framework of DT-enabled intelligent manufacturing. 

3.3.1. Virtual System Development and Application 

Three-dimensional visualization serves as the basis for achieving the “virtual integration, to virtual reflection of 

the real” of DTs. The key to achieving three-dimensional visualization lies in the development and application of the 

DT virtual system. The development of a DT virtual system typically involves steps such as virtual scene development, 

simulation system development, and application. 

Virtual scenarios and simulation systems have been developed using different approaches. Li et al. [79] developed 

a computer numerical control (CNC) milling DT simulation system for tool wear. They used SolidWorks 3D modeling, 

the 3D Max rendering model, the Unity 3D design system interface, program interaction, and the TCP/IP protocol for 

real-time data transmission. Zhang et al. [80] used the Adaptable Planning Simulation Platform Software (VE²) to 

visualize and present DTs in IMSs. They verified the effectiveness of their proposed contour error suppression method 

by characterizing the DT of a small 3-axis CNC machine tool. Jiang et al. [81] perceived the machining environment 

through vision sensors and reconstructed the machining scene using machine vision. They achieved collision detection 

of the machine tool by perceiving the machining elements and simulating virtual machine tool operations. Duan et al. 

[82] addressed the issues of poor real-time monitoring and interaction effects in existing CNC machine tools. They 

constructed a blade-rotor DT system for monitoring the blade-rotor test bench in real time, enabling dynamic testing 

and visualization monitoring of the equipment. Refer to Figure 7 for visualization. Sun et al. [83] developed a DT for a 

supercombustion ramjet engine. Their approach allowed hierarchical parameter portrayal of the engine and design of 

real-virtual interactions in multiple environments. 

 

Figure 7. Application examples of virtual system. 
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Although the development of DT virtual systems is diverse, it highlights the lack of a unified standard method for 

connecting different devices. Therefore, the establishment of a unified standard method is currently in the exploratory 

stage and represents a crucial breakthrough point for the future development of DT virtual systems. 

3.3.2. Model Construction 

The DT model serves as the core and foundation of the DT system. A multitude of studies are model-driven and 

complemented by the development of virtual systems [84–88]. Research on DT-driven modeling of mechanical process 

systems can be summarized as the resolution of the underlying problem, the requirements of the modeling methodology, 

and the evaluation of the model [89]. The primary challenges associated with DT models include the absence of suitable 

modeling tools for complex mechanical products, the handling of extensive data in the machining process, and 

synchronization issues regarding the dynamic mapping evolution information of mechanical product DTs throughout 

their life cycles [90]. Consequently, a hierarchical modeling method for DT models of mechanical products based on 

graph databases has emerged. This approach involves creating product subassemblies or component nodes, establishing 

node relationships in a predefined graph database, storing feature information in the nodes, and conducting 

postprocessing on the established DT models [91–93]. Additionally, a dynamic data modeling method based on time-

sequence databases is proposed. Leveraging the structure, attributes, and scale characteristics of product dynamic data, 

this method significantly enhances the performance of data importation, storage, and analysis [94]. Finally, a collaborative 

evolutionary approach for DT ontology modeling of mechanical products is presented. This approach utilizes blockchain 

technology to address the context of multisource heterogeneous evolutionary content and variable collaboration based on 

trust. By employing distributed storage and ensuring the interoperability and interconnection of all modeling operations, 

this method supports conflict identification and lightweight publishing, yielding favorable results [95]. 

The modeling approach for DTs in the context of engine health monitoring and machining processes requires the 

ability to adaptively integrate multidisciplinary and multilevel information. This is essential for constructing high-

fidelity, multiscale, and multidimensional processing models and for facilitating real-time model updates. 

For instance, Sun et al. [96] demonstrated the application of DT technology in the health monitoring of rotating 

turbine components in an aeroengine. They integrated a multifactor model of the engine’s system performance with 

thermal and structural factors to enable cumulative damage monitoring and prediction of the remaining life under 

various influences. Hu et al. [97] proposed the concept of a Wasserstein generative DT model. They utilized the 

Wasserstein generative adversarial network to model health physical samples accurately, ensuring that the adaptive 

requirements were met. This approach facilitated health monitoring, fault detection, and degradation tracking of rotating 

machinery without the need for prior knowledge, historical data, or fault samples. In a similar vein, Liang et al. [98] 

proposed a multidynamic process modeling model using the DT framework. They established a system-oriented 

correlation and interaction mechanism to optimize cutting parameters, visualize process variables, and assess machining 

stability. This integration of data models, kinetic theories, positional variables, and cutting excitation variables enabled 

comprehensive process optimization. Yu et al. [99] developed a nonparametric Bayesian network DT model to monitor 

the health state of complex systems. They also proposed a model update strategy that exhibited strong self-learning 

capabilities and excellent real-time performance, as demonstrated through experiments. Inspired by biomimicry, Liu et al. 

[100] proposed a knowledge-driven DT mimetic modeling method based on the principles of bionics. This method 

effectively integrates geometric, behavioral, and process models, allowing for mutual interactions. It facilitated real-time 

feedback on the machining process and provided assistance in decision-making, as evidenced by the validation conducted 

on an aerospace part. Building upon this work, Liu et al. [101] further elaborated on the adaptive evolution mechanism of 

decision-making models for DT processing systems. They focused on both incremental learning and migration learning. 

Shen et al. [102] proposed an adaptive migration method for DT models to facilitate their migration under complex 

working conditions. By using drilling machining as an example, they verified the effectiveness of model migration, with 

a prediction error of less than 1.5%. Although various DT modeling methods are available, they all revolve around the 

objectives of adaptability, high fidelity, and multifactor fusion. Consideration must be given to the construction of relevant 

models and the realization of multimodel fusion to accommodate different processing conditions [103]. 

The evaluation of DT models is crucial for quantifying factors such as their quality, performance, applicability, 

and value. To address this issue, Wei et al. [104] proposed a comprehensive DT model evaluation index system, as 

depicted in Figure 8. This system outlines the evaluation criteria for DT models and provides a specific quantitative 

calculation reference method, thereby aiding decision-making at all stages of the product’s life cycle in a DT-enabled 

intelligent manufacturing setting. Evaluating DT models in this manner enables a reference guideline for the modeling 

process, allowing for easier updates and improvements to the models. 
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Figure 8. DT technology applicability evaluation index of CNC machine tools. 

3.3.3. Data Perception, Analysis and Prediction, Intelligent Decision-making 

Data perception, analysis, prediction, and intelligent decision-making technology constitute a key aspect of DT 

application. This technology leverages data perception, analysis, and prediction to enable intelligent decision-making for 

mechanical process systems, thereby guiding their development from digitalization to intelligence [105]. In the context of 

DT-enabled intelligent manufacturing, the primary principle involves collecting vast amounts of data generated by the 

processing process. This includes empirical, historical, and real-time data related to the process. With the aid of algorithms 

and models [106–108], the goals of monitoring and predicting the processing state, performing predictive maintenance on 

processing equipment, and optimizing and evaluating the machining and manufacturing process are achieved. Additionally, 

Kaewunruen et al. [109] constructed and analyzed a 6D building information model (BIM) for lifecycle management of 

railroad turnout systems. This modeling approach facilitates the application of data and supports the implementation of 

DT technology. Hence, the ability to perceive and process heterogeneous data from multiple sources originating from 

mechanical process systems is a prerequisite for the application of DT-enabled intelligent manufacturing. 

Analysis and prediction are the fundamental components of intelligent manufacturing applications enabled by DT 

technology. By utilizing the vast amount of data generated by mechanical process systems, algorithms and model training 

can accurately predict the machining state and equipment performance, thereby enhancing the predictability of the overall 

machining process [110–112]. Zhao et al. [113] proposed a novel combination of virtual and real DT techniques for the full 

life cycle management of rolling bearings. They employed an improved CycleGAN model with the Wasserstein distance to 

map simulation data in virtual space to actual measurements in physical space, effectively minimizing the error between the 

two datasets. Subsequently, they utilized the simulation data in an advanced remaining service life prediction method, 

achieving highly accurate predictions for rolling bearings. Similarly, Feng et al. [114] presented a DT-driven intelligent health 

management method aimed at monitoring and evaluating the degradation of gear surfaces. This approach successfully 

predicts the remaining service life of gears and has been validated through two durability tests involving different major 

degradation mechanisms. In addition, Zheng et al. [115] developed a DT-driven intelligent algorithm that combines two 

different force models to identify milling parameters during milling processes. Through milling experiments, the proposed 

algorithm was found to enhance machining quality and efficiency. Finally, Liu et al. [100] proposed a DT modeling approach 

based on bionic principles, constructing multiple DT models, including geometric, behavioral, and process models. The 

feasibility of this method for monitoring and controlling the air rudder machining process was experimentally demonstrated. 

Zhao et al. [116] utilized an intragroup alignment strategy, an intergroup alignment strategy, adversarial learning, and 

a regression alignment strategy to learn domain invariant features and supervision from multiple sources. The proposed 

fusion life prediction method successfully addresses the issue of small samples and achieves accurate prediction of bearing 

health states. Ghosh et al. [73] proposed two computerized systems for building and adapting dDTs. The modular 
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architecture of the proposed DT construction system (DTCS) and DT adaptation system (DTAS) is described in detail. 

The efficacy of the DTCS and DTAS is demonstrated using milling torque signals as an example. Luo et al. [117] 

developed a multidomain unified modeling method for DTs and investigated the mapping strategy between physical and 

digital space. This method improves the operation mode, reduces the probability of sudden failure, and enhances the 

stability of CNC milling machines. The predictive analysis of mechanical process systems through algorithmic models 

and other predictive techniques enables various functions, including fault diagnosis, error suppression, life prediction, 

and parameter optimization. These functions greatly contribute to improving machining accuracy and efficiency.  

Intelligent decision making is a critical aspect of DT-enabled intelligent manufacturing, as it significantly contributes to 

the resource utilization of machining processes. Liu et al. [118] constructed an adaptive DT decision model that can adjust to 

different working conditions. Through drilling experiments, it is proven that the decision model effectively reduces burr 

prediction errors. De Giacomo et al. [119] proposed an approach based on a Markov decision process, inspired by the 

combination of network services, to automatically assign equipment to manufacturing tasks. This approach overcomes the 

limitations of traditional planning methods and provides optimal strategies in terms of cost and quality. The strategies are 

continuously updated to adapt to changing scenarios. The DT decision model achieves machining error suppression and 

dynamic resource scheduling optimization, leading to improved machining accuracy and efficient scheduling strategies. 

The fundamental technologies that enable DT-enabled intelligent manufacturing are complementary in nature. The 

development of virtual systems serves as the underlying foundation for establishing DT models. The construction of these 

models accurately reflects the operational status of real systems, while data perception ensures that the models are 

continuously updated with real-time data. Through analysis and prediction, it becomes possible to forecast the performance 

and anticipate failure risks of real systems, which aids in early intervention and optimizes decision-making. The integration 

of artificial intelligence and machine learning technologies in intelligent decision-making assists decision-makers in 

making more accurate and timely decisions. In summary, the integration of DT into intelligent manufacturing empowers 

companies to optimize operations, enhance production efficiency, reduce costs, and significantly contribute to product 

design and services. As technology continues to progress, DT systems will exhibit vast potential in various sectors, 

thereby becoming a vital tool for driving industrial upgrading and encouraging innovation. 

4. Applications in Machining 

In recent years, the scope of research on DT-driven mechanical process systems has expanded significantly, 

resulting in a wide range of applications. In this section, we examine the utilization of DT-driven mechanical process 

systems at various stages of the product life cycle, including product design, manufacturing, and service. We utilized 

the product full life cycle classification standard as a reference to analyze the incorporation of DT at each stage. We 

present the specific applications of DT technology at each stage, alongside a comprehensive assessment of its strengths 

and weaknesses. This analysis is presented in Figure 9. 
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Figure 9. Specific application of the DT-driven mechanical process system. 
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4.1. Product Design  

In the product design stage, the implementation of DT technology can enhance the intuition and accuracy of the 

design, incorporating user requirements, iterative optimization, and a focus on human-centered product design and 

green sustainable design goals. Additional benefits include virtual sample processing, product performance verification, 

and optimization.  

As an illustration, let us consider the design stage of a semi-industrial combustion furnace. By leveraging Kalman 

filtering, adjustments to the model’s predictions can be made, taking into account potential uncertainties. This allows 

for the realization of predictions regarding combustion chamber performance, reliability assessments, and test program 

optimization, all of which are pivotal in upgrading processing standards and reducing energy consumption [120]. In a 

separate study, Friederich et al. [121] proposed the application of DT in product design and presented a framework for 

DT-driven intelligent product design, focusing on key processes and related technologies. They investigated the 

conceptual theory of product design and described the DT model configuration process based on conceptual design 

[122,123]. Furthermore, they proposed a DT-driven product design evaluation process and evaluation algorithm [124]. 

The authors also investigated the application of a DT-driven green design methodology [125]. By expanding the 

application of DTs to product design, the authors propose a virtual prototype design for CNC machine tools based on 

DTs and successfully model the coupling relationship of complex electromechanical systems of machine tools [126]. 

Moreover, they proposed a lean design process for machine tools based on DTs, which allows for the optimization of 

machine tool feed system parameters [127,128]. 

In addition, the application of DT technology in the product design stage provides valuable guidance for 

determining product solutions, analyzing product parameters, and integrating products with user requirements. 

Tao et al. [62] proposed a novel approach to product design based on the DT method. They analyzed the DT-driven 

product design framework, developed a DT model for design tasks incorporating task analysis and scenario decomposition, 

and proved through experiments that it enhanced product quality. Huang et al. [129] proposed a DT data management 

method for products using blockchain technology to improve the efficiency of data sharing among participants. They 

created a peer-to-peer network and achieved complexity management in the product design process through product design 

workload prediction and functional change propagation analysis methods. Wu et al. [130] proposed a DT complex product 

loop design framework that integrates multidisciplinary collaboration across three phases: conceptual design, detailed 

design, and virtual verification. This framework enables real-time verification and modification of issues arising from 

multidisciplinary integration, thereby minimizing the number of iterations and costs in the design process. This study 

lays a theoretical foundation for bridging the gap between the product design and manufacturing phases. 

In the product design stage, the application of DTs effectively considers user needs and design goals, making 

product program development more intuitive and rational. It also provides the design team with additional opportunities 

for innovation and optimization through virtual machining verification, thus enhancing the efficiency and quality of 

product design. Moreover, this approach significantly reduces the cost of physical processing verification. 

4.2. Product Manufacturing  

During the product manufacturing stage, the application of DT technology aims to achieve quality data acquisition, 

processing quality monitoring and analysis, processing quality prediction, and control functions in the mechanical 

process system. These aspects are crucial for optimizing the product manufacturing process, improving processing 

quality, and increasing processing efficiency [131–133]. This section explores the specific applications of DT-driven 

machining processes and analyses their research progress and limitations. 

4.2.1. Applications in Machining 

The traditional mechanical process system includes a machining process involving a machine tool system, a 

workpiece, a tool, and a fixture. In this section, we will examine the concept of the traditional mechanical process 

system and discuss the specific application of DT-driven mechanical process systems [134]. We will explore the 

application of DTs in machine tool systems, workpieces, tools, fixtures, and their respective functions. 

(1) DTs for Machine Systems 

DT of machine tool systems refers to the application of monitoring the performance status of machine tool systems, 

including machining parameters, machining errors, modals, and other performance and abnormal fault status processing, 

based on DT technology. Machine tool condition monitoring is a significant application of the DT of machine tool 
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systems. Traditional monitoring technologies, such as cameras and sensors, may encounter issues such as image delays, 

delays, and difficulties in determining the source of errors at the physical end. An approach proposed by Liu et al. [135] 

addresses the fusion of heterogeneous data from multiple sources and the lack of semantic information through DT 

modeling of CNC machine tools. It enables comprehensive sensing of the operating status of machine tools, thus 

achieving condition monitoring services. Another study by Guo et al. [128] focused on an improved Gilbert–Johnson–

Keerthi distance algorithm to enhance the detection of collision information between a tool and a machine tool during 

the simulation and monitoring of machine tool motion. This enhancement results in a more realistic display of the 

workpiece shape. The usability and efficiency of the system are verified through an example of machining a typical 

shaft part with a CNC machine tool. This remote interactive simulation of the machine tool demonstrates the benefits 

of the improved algorithm. 

Overall, the DT modeling of CNC machine tools addresses the challenges of fusing multisource heterogeneous 

data and addressing insufficient semantic information. It enables effective condition monitoring services by 

comprehensively sensing the operating status of machine tools and enhances the detection and display of collision 

information during the simulation and monitoring of machine tool motion. 

Realizing the prediction process for abnormal states in machine tool systems is another crucial application of 

machine tool DTs. This includes predicting machine tool performance and component wear degradation. Lv et al. [136] 

confirmed the effectiveness of a self-built, self-assessed, and self-optimized maintenance system based on a bioinspired 

DT machine tool. Through bearing fault diagnosis experiments, this system achieved unmanned maintenance of 

bearings. Yang et al. [137] established a hybrid prediction method for a performance degradation model by constructing 

a meta-motion DT model, analyzing wear theory, and applying algorithms. This method inherits the advantages of both 

data-based prediction and model-based prediction, accurately predicting machine tool transmission units. liu et al. [138] 

proposed a DT approach for motion axes, incorporating a time-varying error model based on heat transfer theory and 

vision modeling. This method predicts and compensates for time-varying errors, reducing error fluctuations by 69.19%, 

as demonstrated by experiments on real-time errors in hole spacing.  

The application of DTs for machine tool systems enables condition monitoring and the prediction of abnormal 

conditions in machine tools. This significantly promotes the safe and efficient machining of mechanical process systems. 

Parameter optimization plays a crucial role in optimizing the machining process. Traditional parameter optimization 

methods rely on manual experience and often involve high levels of uncertainty. The machining process DT facilitates 

error suppression and optimization of machining parameters, thereby laying the foundation for achieving high-quality 

and high-level machining. 

(2) Workpiece DT 

The term “workpiece DT” refers to the application of DT technology in predicting and optimizing various machining 

parameters, machining accuracy, surface roughness, and other characteristics of workpieces during the machining process 

[139]. Ghosh et al. [140] developed a DT structure based on a hidden Markov model to predict the surface roughness 

generated by continuous grinding operations. This DT structure was then implemented to accurately predict the surface 

roughness during continuous grinding operations. Zhu et al. [141] proposed a DT-driven manufacturing framework for 

thin-walled parts. This framework collects and updates DTs of workpieces in different states, providing machine tool 

operators with real-virtual interaction opportunities. The aim is to make the start-up phase faster and more accurate. 

The feasibility of this framework was demonstrated in a case study involving leaf disc machining. 

Wang et al. [142] proposed a DT-driven clamping force control method to improve the machining accuracy of 

thin-walled parts. By establishing a full-factor information model of the clamping system and incorporating dynamic 

information from the clamping process, a virtual space model was constructed using finite element simulation and deep 

neural network algorithms. This method was verified and found to be effective through arithmetic examples. Dai et al. 

[143] proposed an ontology-based information modeling method for prefabricated parts. This method enables the 

association and integration of machined part feature information in the process of virtual-real interaction. This study 

also provides a theoretical foundation for optimizing machining parameters and predicting machining quality.  

Zhang et al. [144] investigated the interaction between machine tools and milling processes from a system 

perspective. They developed an integrated model of the ball screw feeding system and the milling process, which 

enabled multiphysics field simulation of the entire system considering multisource harmonics. This approach is highly 

significant for studying machine tools and milling processes as a coupled whole. Li et al. [145] presented an aeroengine 

assembly quality assessment method based on cumulative block information modeling and a process-oriented assembly 

twin. They established an analytical DT platform that integrates modules for measurement, a digital design model, a 
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geometric deviation analysis model, an information model, and a database. This platform enables quality analysis at the 

assembly operation stage and lays the foundation for machining key aeroengine components.  

Wang et al. [146] proposed a novel method for rapidly calculating engine blade strains, aiming to overcome the 

technical challenges of real-time calculations in DTs and achieve simultaneous mapping of engine blade health states. 

The accuracy and effectiveness of this method were verified through engine blade strain measurement experiments and 

numerical simulations. The results demonstrated a significant improvement in real-time performance, with a speed 

increase of approximately 1444 times compared to that of conventional finite element methods. The minimum run time 

achieved was 0.91 seconds. Furthermore, the minimum relative error was 0.11%, and the average relative error was less 

than 0.76%. The application of workpiece DTs facilitates the optimization of machining parameters, the prediction of 

surface roughness, and the optimization of machining decisions. These functions have a significant impact on the 

machining of special workpieces, such as aerospace thin-walled parts, aero-engine blades, and case parts. 

(3) Tool DT 

Tool DT refers to the application of DT technology in researching and analyzing tool wear monitoring and 

prediction, selection decisions, and tool service in the machining process [147–149]. First, monitoring and predicting 

tool wear can effectively reduce machining errors and improve efficiency [150]. Qiao et al. [151] proposed a data-

driven DT model and a hybrid model prediction method based on deep learning, which demonstrated the accuracy of 

tool wear prediction through the study of vibration data from a milling machine. In addition, Natarajan et al. [152] 

proposed a technique that utilizes DTs to construct a balanced virtual instrumentation framework that is perfectly 

matched to the physical system to achieve exceptional accuracy in inspecting and predicting tool conditions. The tool 

condition monitoring system deploys the DT model to predict different tool conditions based on sensory data. Deebak 

et al. [153] presented a deep migration learning-based DT-assisted troubleshooting method for analyzing the operating 

conditions of machining tools. Furthermore, the system develops an intelligent toolholder that integrates a type K 

thermocouple and a cloud data acquisition system on a WiFi module. Analytical studies confirm that this intelligent 

tool holder provides higher accuracy and enables the optimization of milling and drilling operations of cutting tools. 

Finally, Zhuang et al. [154] proposed a DT-based approach that realizes the physical-virtual symmetry of the DT model 

by constructing a symmetric virtual tooling system that exactly matches the actual tooling system. This approach 

accurately maps the real-time state of tool wear. 

Zhang et al. [155] proposed a framework for model updating based on DTs, which is used to obtain an accurate 

tool wear model for predicting and managing machining processes. Xia et al. [156] presented a kinematic model and 

trajectory planning method for the UR10 robot by establishing a DT unit in the inspection system. The authors utilized 

Unity3D software to create the DT environment for the inspection system. Through socket communication, a 

synchronous mapping function is established between the robot’s digital model and the physical entity, enabling 

complex tool edge image acquisition trajectory planning, precise teaching of the virtual scene, digital monitoring of the 

inspection process, and optimization of the system model. The stability and effectiveness of robot kinematics, trajectory 

planning, and interactive communication in the tool wear image inspection environment are verified. Chen et al. [157] 

utilized a bionic digital brain as the intelligent core of the DT double-cutting machining framework, which includes 

monitoring, prediction, optimization, and control. They demonstrated the powerful information processing capabilities 

of DTs and presented real-time precision intelligent machining results. Liu et al. [158] proposed a DT-driven method 

for predicting surface roughness and adaptively optimizing process parameters. When the predicted surface roughness 

based on real-time data does not meet the machining requirements, the DT system issues a warning and adaptively 

optimizes the cutting parameters based on the current tool wear prediction. The effectiveness and advancement of the 

proposed method are verified through the development of a DT system for process optimization and a large number of 

cutting tests. This approach combines real-time monitoring, accurate prediction, and optimization decision-making in 

the machining process, resolving the issues of inconsistent quality and efficiency. Song et al. [159] addressed the 

problem of tool wear-induced vibration and deformation in the milling of thin-walled parts. They proposed a DT tool 

wear state recognition method using feature vector extraction, hyperparameter optimization, and support vector machine 

algorithms. The experimental results show a recognition rate of over 90% for the system. However, due to limitations 

in the support vector machine algorithm itself, the method exhibits weak generalizability and is not applicable to large 

sample sizes. Additionally, Zhang et al. [160] incorporated a deep migration learning strategy and edge distribution rule 

into the DT tool model to achieve target domain training with small samples. This approach improves the accuracy and 

appropriateness of the model and resolves the issue of small samples under variable working conditions. 
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Second, in terms of tooling services, DT-based tooling services enable the efficient utilization of tooling. Xie et al. 

[161] established a tool DT model consisting of five stages: tool market investigation, research and development, 

production planning, manufacturing, customer use and service. This model allows real-time status monitoring of cutting 

tools, visualization of tool information, parameter optimization, maintenance strategies, and virtual maintenance. The 

application of tool DTs is one of the most widely used and extensively researched applications of DT-driven mechanical 

process systems. The achievement of tool wear state monitoring and prediction plays a crucial role in reducing 

machining errors. Research on DT-based tool services, tool selection strategies, and tool change speeds has entered the 

exploration stage. 

(4) Fixture DT 

Fixture DT refers to the application of DT-based technology to the control of the fixture itself and the clamping 

force control during machining. Wang et al. [142] designed a DT dual-drive clamping force control method by 

integrating a neural network and finite element simulation to address the problem of machining deformation caused by 

inadequate fixture clamping in traditional machining processes. Through experiments considering the full-factor 

information of the clamping system, they proved the effectiveness of the method. Weckx et al. [162] proposed a cloud-

based DT for monitoring high-performance composite machining adaptive clamping devices by incorporating computer 

vision-related technology. This implementation achieved functions such as tool wear monitoring based on the clamping 

force and the evaluation of clamping device operation. Additionally, they innovatively developed the function of 

automatically triggering monitoring algorithms for the transmission of machining signals to the cloud.  

The application of fixture DTs allows for the optimization of clamping parameters, the prediction of clamping 

stability, and the control of clamping force during machining. These capabilities contribute to improving the stability 

of clamping and enhancing machining accuracy. By leveraging key technologies such as analysis and prediction, 

decision-making optimization, and fault processing, the application of fixture DTs significantly improves the efficiency 

and accuracy of machining. Implementing error prediction in the machining process is an essential step to avoid 

downtime risks and ensure machining efficiency. Anomaly detection based on DT technology provides a guarantee for 

improving efficiency and accuracy. The integration of DTs in the machining process enables the suppression of 

machining errors, effectively improving machining accuracy and ensuring machining safety. 

4.2.2. Deficiencies 

In the product manufacturing stage, the implementation of DT technology has greatly facilitated the transformation 

and upgrading of mechanical process systems. However, there are still certain limitations that need to be addressed. 

First, research on DT-driven mechanical process systems requires a substantial amount of data. The existing research 

predominantly relies on a single method of data monitoring, which incurs high acquisition costs, low accuracy, poor 

real-time performance, and a limited amount of data [154]. Second, the research on DT-driven mechanical process 

systems is often limited to specific research objects, processes, working conditions, and machining scenarios, rendering 

it inapplicable in a universal context [163]. Finally, while there is a significant amount of research on condition 

monitoring and virtual simulation in DT-driven mechanical process systems, there is a lack of research on algorithms, 

models, and mechanism analysis. Consequently, the application of algorithms is often constrained by their inherent 

limitations, which restrict the conditions under which they can be implemented [164]. Therefore, there is a crucial need 

for improvements in the application of DT-driven mechanical process systems. 

4.3. Product Service 

From the previous discussion on the specific application of DT-driven mechanical process systems and the analysis 

of DT application in machining processes, it is evident that DT technology enables functions such as machining status 

monitoring, prediction, and process optimization. Building on this, this section will explore the application of DTs in 

the product service stage, focusing on fault detection and predictive maintenance of mechanical process systems, 

machining process evaluation and optimization, and product sustainable manufacturing and operation and maintenance. 

4.3.1. Fault Diagnosis and Predictive Maintenance 

Traditional preventive maintenance, with its high cost and low efficiency [165,166], is being challenged by the 

emergence of predictive equipment maintenance. This approach, based on DT technology, allows for the prediction of 

maintenance risks and effectively reduces the chances of equipment failure. By improving maintenance efficiency, it is 
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clear that predictive maintenance is the future trend for mechanical process system maintenance [167–169]. To optimize 

equipment failure monitoring, prediction, and maintenance decisions, He et al. [170] proposed a complex equipment 

health management approach. A hybrid framework based on DT modeling and DT data, as presented by Luo et al. [56] 

further enhances this optimization. Building on this framework, a hybrid predictive maintenance algorithm was 

proposed, and its effectiveness was verified through examples. In the quest for effective DT-based predictive 

maintenance systems, Van et al. [171] used domain analysis to model key features and synthesize relevant literature. 

The result was a DT-based predictive maintenance system that derives three views: a user view, an architecture view, 

and a deployment view. The analysis demonstrated the potential of creating a reference architecture in the field of DT-

based predictive maintenance. 

Zhong et al. [168] summarized the growing research interest in predictive maintenance based on DTs in the field 

of manufacturing. This paper proposes a gap between DT technology and predictive maintenance technology, 

emphasizing the importance of utilizing DT technology to achieve effective predictive maintenance. Furthermore, a 

predictive maintenance approach based on DTs is presented, highlighting the differences between this approach and 

traditional predictive maintenance. To address fault diagnosis in both the development and maintenance phases, Xu et 

al. [172] proposed a two-stage DT-assisted method based on deep migration learning. This method identifies potential 

problems that may not have been considered during the design phase and uses deep neural network-based diagnostic 

models for fault diagnosis. By employing deep migratory learning, previously trained diagnostic models can be migrated 

from virtual space to physical space for real-time monitoring and predictive maintenance. This ensures diagnostic 

accuracy and prevents unnecessary delays. Predictive maintenance based on DTs enables an “ex ante” preventive mode 

for mechanical process systems, effectively reducing machining losses and improving efficiency compared to the 

traditional “ex post” repair and fix mode.  

4.3.2. Process Evaluation and Optimization 

The process evaluation of machining processes is crucial for enhancing process execution and reducing product 

development cycles [173]. Liu et al. [124] proposed a data-driven machining process evaluation method using DTs by 

aligning machining process data with process design data. This method successfully evaluated the machining process 

for key components of marine diesel engines. Pereverzev et al. [174] applied DT technology fused with dynamic 

programming to test and iteratively optimize the grinding cycle of a CNC machine. This optimization ensured consistent 

quality of machined parts by designing the optimal feed control cycle. To optimize the CNC machining process, Vishnu 

et al. [175] simulated, predicted, and optimized the workpiece surface roughness in the process planning and machining 

stages. They developed a surface roughness prediction model based on DTs, providing theoretical support for the 

development of optimization technology.  

Zhu et al. [141] established a DT model for the workpiece and utilized algorithmic optimization to provide real-

time machining information to the machine operator. By optimizing the tool direction and tool path after each work 

step, they demonstrated the effectiveness of their method through machining examples. Chen et al. [176] proposed a 

DT-driven method to suppress delamination damage in real time by analyzing the relationship between the thrust 

increase caused by tool wear and CFRP delamination. Through extensive drilling experiments, they input cutting 

parameters and thrust signals into the DT model, Gaussian process regression, and mathematical modeling to predict 

current tool wear and thrust profiles, respectively. The results showed excellent real-time prediction, with maximum errors 

of 4.1% and 4.2% for tool wear and exit thrust prediction, respectively. Compared to conventional drilling, DT provided 

closed-loop feedback on the time-varying critical feed rate for each hole, resulting in no delamination mode I and up to 

48.4% suppression of delamination mode III. This intelligent virtual-real linkage in the CFRP drilling process offers 

important theoretical support for the effective suppression of delamination damage in automated production processes.  

Optimizing machining processes holds significant value in improving machining performance, accuracy, and 

efficiency. Utilizing DT technology provides a new approach to mechanical process optimization. Implementing DT-

based machining process evaluation and optimization positively impacts reducing machining error rates, formulating 

optimal machining process routes, and enhancing machining efficiency. 

4.3.3. Product Sustainable Manufacturing and O&M Management 

With the introduction of China’s “Carbon Peak Carbon Neutral” initiative and other major strategic decisions, the 

green and sustainable product manufacturing mode has become the mainstream approach in the machinery manufacturing 

industry [177–180]. The entire life cycle of sustainable manufacturing is supported by a model that includes product 
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material selection, sustainable disassembly, end-of-life recycling, and remanufacturing, all based on DT technology. This 

model provides technical support for achieving a green and sustainable development model through the monitoring and 

evaluation of energy consumption during the processing process and visualization of green features [181]. 

Xiang et al. [182] proposed a DT-based approach for selecting sustainable materials optimally, with the aim of 

achieving sustainable manufacturing over a specific period. This is done through simulating and evaluating the 

performance of sustainable materials. Li et al. [183] proposed a DT-driven method for evaluating sustainable performance 

in intelligent manufacturing and confirmed the effectiveness of this approach through testing. Kerin et al. [184] proposed 

a product DT model that utilizes data from different instances in the product life cycle to optimize remanufacturing plans. 

This includes predicting residual product life through neural networks and employing techniques such as bee algorithms 

for decision-making, ultimately achieving optimal product remanufacturing decisions. Sustainable manufacturing plays a 

crucial role in building an ecological civilization, and the adoption of DTs in the sustainable manufacturing of products 

promotes the transformation of the manufacturing industry toward sustainability and intelligence. This is achieved through 

the monitoring and evaluation of energy consumption during the processing process, the characterization of sustainable 

features, and the establishment of mechanisms for end-of-life recycling, among other technological means. 

It is crucial to understand the operation and maintenance of the mechanical process system during the product service 

stage. The operation and maintenance service system driven by DTs is explained in terms of pattern updating, data 

application, and system interaction. For instance, this article explores the application of DTs in the operation and 

maintenance of aviation engines [185], focusing on accurate monitoring, fault diagnosis, performance prediction, control 

optimization, and other functions. Fu et al. [186] identified the time and cost inefficiencies of traditional design, 

manufacturing, and maintenance processes as inefficient due to their independent operation and management. To address 

these inefficiencies, a unified platform is needed for efficient and intelligent design, manufacturing, and maintenance of 

machinery, equipment, and systems. To achieve this goal, an information-physical combinatorial framework is proposed 

that enables more accurate design, defect-free manufacturing, smarter maintenance, and advanced sensing technologies. 

Chen et al. [187] addressed the problems with the traditional “regular maintenance and fault repair” mode for mechanical 

equipment, including high costs and low efficiency. An intelligent mode of “predictive maintenance” and “condition 

maintenance” is proposed to achieve predictive maintenance, life prediction of industrial equipment, and improved virtual-

realistic interaction and autonomous accurate service. Huang er al. [188] proposed an operation and maintenance service 

system that included virtual-real space interaction, data-driven knowledge updating, and real-time product diagnosis 

and maintenance. The effectiveness of this system is verified through a machine tool performance analysis test. 

It is highlighted that operation and maintenance management based on DTs is significant for mechanical process 

systems. The establishment of a digital operation and maintenance system reduces the impact of unpredictable factors, 

such as the aging and wear of equipment and structural deviations. This enables more accurate and efficient operation 

and maintenance compared to traditional manual experience-based systems [189]. 

Throughout the product life cycle, the application of DT technology can achieve collaborative optimization of 

product design and manufacturing, improve production efficiency and product quality, and continuously create value 

through digital services to meet customer needs and enhance competitiveness. With the continuous development and 

popularization of digital DT-enabled intelligent manufacturing, its application in the product field is expected to become 

more extensive, offering greater innovation and development opportunities for enterprises. 

5. Conclusions 

The research significance and current status, key technologies, and specific applications of DT-enabled machining 

are analyzed in the context of the development process of DT-enabled intelligent manufacturing. With the rapid 

integration of information technology and operational technology in the industrial field, significant progress has been 

made in manufacturing intelligence. DT-driven applications, as a core element of future manufacturing, will challenge 

and transform the foundation of manufacturing systems and operations. The convergence of the digital and physical 

worlds enables informed decision-making in all aspects of manufacturing operations, resulting in a data-driven 

intelligent manufacturing environment. The conclusions of this paper are as follows: 

(1) The development history of DT-enabled intelligent manufacturing can be examined through the analysis of the 

volume and trend of publications over time. By analyzing the research frontiers and hotspots, we can highlight the 

concerns of practical applications related to DT-enabled intelligent manufacturing research. Bibliometric analysis 

revealed a surge in the number of articles on DT-enabled intelligent manufacturing since 2019, generating 

significant interest in the industry. This analysis provides clues and support for further exploration and research. 
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(2) DTs play a vital role in enabling intelligent manufacturing by facilitating interactions between the physical and 

virtual worlds of mechanical process systems. It promotes the digital transformation of mechanical process systems 

and paves the way for cyber-physical integration. The theoretical framework of the key enabling technologies of 

DT-enabled intelligent manufacturing revolves around the architecture of the five major layers: physical, data, 

model, function, and application. These key enabling technologies are mutually complementary. The basic research 

route includes data-driven approaches, model simulation, algorithm analysis, intelligent decision-making, and 

experimental verification. As technology continues to advance, DT systems will exhibit significant potential in 

various fields, becoming a crucial tool for promoting industrial upgrading and innovation. However, there is 

currently a lack of common definitions and methods for the core technologies of DTs, including data types, virtual 

system construction, and the integration and selection of models and algorithms. 

(3) The application of DT-driven mechanical process systems has yielded significant results, enabling various 

functions such as mechanical product design, processing status monitoring, processing error suppression, 

equipment predictive maintenance, processing process evaluation, and processing parameter optimization. 

Throughout the entire product life cycle, the use of DT technology enables the collaborative optimization of 

product design, manufacturing, and service, resulting in improved production efficiency, product quality, and 

customer satisfaction. During the product manufacturing stage, a time-varying error model of the motion axis is 

constructed based on heat conduction theory and a visualization model. Through experimental predictions of the 

time-varying error in the hole distance of workpieces, it has been found that the lowest discrepancy between the 

predicted and actual errors is only 0.2 μm. By compensating for real-time time-varying errors, the fluctuation range 

of the hole distance errors is reduced by 69.19%. 

(4) The development of DT-driven mechanical process systems continues to play a pivotal role in the digital 

transformation of the manufacturing industry. The “DT + emerging technologies” model holds the potential for even 

greater possibilities. However, the current stage is marked by a paradox wherein the demand for more advanced levels 

of technology, methodology, system integration, and skilled professional clashes with the limited availability of 

industrial software and hardware infrastructure. This bottleneck poses a challenge to the rapid advancement of DTs. 

6. Prospects 

The application of DTs remains a critical technology for intelligent manufacturing. To address the challenges 

related to DT empowerment in intelligent manufacturing, it is necessary to examine existing accomplishments, assess 

the technical framework, and evaluate the current application status. The future development directions are as follows: 

(1) As the manufacturing industry undergoes transformation and upgrades, the importance of intelligent manufacturing 

continues to grow. Intelligent manufacturing, combined with DT and its intelligent sensing and simulation 

capabilities, enhances the efficiency and intelligence of product production. The rapid advancement of enabling 

technologies such as cloud computing, big data, artificial intelligence, the Internet of Things, hypernetworks, 

blockchain, and 5G has led to the diverse development of DT-enabled intelligent manufacturing. The fusion of 

DTs with emerging technologies holds tremendous potential for further advancements in intelligent manufacturing. 

(2) The efficient utilization of data is a crucial objective of DT-enabled intelligent manufacturing. The collection, 

processing, and storage of heterogeneous data from various sources play a vital role in achieving this goal. The 

widespread adoption of systematic DT-enabled intelligent manufacturing applications is expected. The limited 

functionality of localized DT applications can be overcome by advancing DTs from the component level to the 

machine level, production line level, and even the DT ecosystem level. This evolution will positively impact the 

digital transformation of the manufacturing industry. 

(3) The concept of sustainability has gained significant importance, and integrating it with intelligent manufacturing 

to achieve sustainable intelligent manufacturing has become a priority in future research. As a sustainable 

technology, DT helps reduce emissions throughout a product’s life cycle. This aligns with the requirements of 

intelligent manufacturing and comprehensive sustainable development, taking into account environmental, 

economic, and social perspectives. 

(4) Intelligent manufacturing is widely recognized as a crucial area for future research and applications. By applying 

cutting-edge technologies to traditional products in manufacturing and services, intelligent manufacturing adds 

value to a broad range of products and systems. Its potential can be further maximized by integrating it with other 

technologies such as intelligent transportation, intelligent energy/grid, intelligent buildings, intelligent healthcare, 

intelligent cities, and intelligent societies. 
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