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ABSTRACT: This research paper explores the financial adoption challenges of the Industrial Internet of Things (IIoT) in industry. 

Previous studies have mainly concentrated on designing affordable IIoT devices, reducing operational costs, and creating conceptual 

frameworks to assess the financial impact of IIoT adoption. The objective of this paper is to investigate whether IIoT adoption’s 

financial benefits outweigh the initial costs in small and medium-sized enterprises (SMEs). The data from the Industrial Assessment 

Centers (IAC) database were analyzed, focusing on 62 U.S. manufacturing SMEs across 10 states and 25 Standard Industrial 

Classifications (SICs), evaluating projected IIoT implementation costs and anticipated cost savings. Results from the analyses reveal 

that statistically, the difference between implementation costs and savings is significant at a 95% confidence level. Practically, this 

indicates that SMEs, despite facing high initial costs, can expect these investments to be counterbalanced by substantial savings. 

From an engineering perspective, this finding raises awareness among SMEs that, beyond overcoming financial barriers, IIoT 

technologies serve as a strategic enhancement to operational efficiency and competitive positioning. This study acknowledges the 

limitations including reliance on estimated projections and a narrow industry focus. Future research should broaden the sample and 

explore the lifecycle costs of IIoT. 

Keywords: Industrial internet of things; Industrial energy efficiency; Small and medium sized manufacturing 
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1. Introduction 

The Internet of Things (IoT) refers to the interconnected network of devices capable of collecting and exchanging 

data, which has drawn increasing attention from the U.S. industry due to its potential to transform manufacturing 

processes into smart, efficient, and sustainable operations [1,2]. When applied within industrial settings, this concept is 

known as the Industrial Internet of Things (IIoT), adopting IoT principles to the industrial sector and focusing on the 

specific needs of manufacturing facilities and the operational challenges they face [3]. 

The IIoT is central to the integration of Operational Technology (OT) with Information Technology (IT), leading 

to enhanced efficiency and sophisticated automation in manufacturing processes [4]. This transformative integration is 

marked by a network of intelligent devices working collaboratively, revolutionizing automation and data exchange, and 

facilitating informed decision-making through real-time insights, ultimately elevating operational efficiency [5]. The 

rapid enhancement of industrial informatization underscores the IIoT as a pivotal component in the future evolution of 

industrial systems, particularly in improving energy efficiency [6], and supporting the three environmental pillars of 

sustainable development: resource efficiency, sustainable energy, and transparency [7]. 

In the United States, the industrial sector, which was responsible for 35% of end-use energy consumption in 2021, 

is facing an urgent demand for sustainable and energy-efficient innovations given its environmental footprint [8]. 

Consequently, there is a growing interest in green technologies to reduce such environmental impacts [9,10]. IIoT 

emerges as a critical solution offering intelligent, efficient, and sustainable operational mechanisms [11]. Despite its 

potential, IIoT adoption confronts significant barriers. Numerous researchers studied the IIoT adoption barriers in 

different classifications of industries. For example, Desingh et al. reviewed the barriers to IoT adoption within the 
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context of healthcare systems [12]. Hundal et al. discussed the IIoT adoption challenges, including cost-effectiveness, 

power requirement, wireless communication range, data latency, data storage, data processing, and data interoperability 

within the agriculture industry [13]. 

Through analyzing the existing studies, we classified the IIoT adoption barriers into four categories, following as 

technological, organizational, educational, and financial barriers. As the IIoT technology continues to revolutionize 

industries, facilities face significant technological barriers, primarily security concerns, that impede its widespread 

adoption. Various studies have pinpointed challenges related to security and data sharing, including unauthorized data 

collection [14], and risks associated with sensitive information being shared, stored by third parties, or logged in 

unsecured storage [15]. As a result, it becomes necessary for industrial facilities to balance ethical considerations and 

security measures to ensure the protection of stakeholders’ data and privacy [16,17]. Organizational barriers represent 

another significant challenge to IIoT adoption, often stemming from the novelty of IIoT and the resulting lack of 

established standards and reference designs, as observed by Kamble et al. in the context of the food retail industry [18].  

Closely related to these are educational barriers, where a prevalent issue is the absence of widespread knowledge 

about new technologies. This lack of awareness inhibits companies from fully understanding both the potential benefits 

and the inherent risks, such as security threats, of innovations like IIoT. Schrama et al.’s research supports the need for 

educational initiatives, finding that companies with a keen interest in IIoT but low security awareness are more likely to 

engage in training programs. In contrast, those already aware of IIoT risks may hesitate to implement these technologies [19].  

Financial barriers to adopting the Industrial Internet of Things (IIoT) are another significant concern for many 

industries. The affordability of technology is a primary barrier, with the initial high cost of implementation often being 

a deterrent for industrial businesses [20]. In addition, the market for IIoT suppliers and service providers is still 

maturing, and in some regions, the scarcity of providers can lead to monopolistic pricing, further inflating costs [21,22]. 

Table 1 summarizes the classifications of these obstacles. 

Table 1. IIoT Adoption Barriers. 

Classification Barriers’ Examples 

Technological 

Security and privacy concerns, and data protection [23,24] 

Ensuring Data confidentiality [25]. 

Maintaining reliability, safety, and security of data [26,27].  

Trust management issues [28]. 

Complexity in big data management [29], including storage, processing, and analysis [30]. 

Data heterogeneity and integration challenges [31] 

Complex system architecture [32]. 

Device management [33,34]. 

Interoperability and standardization [35]. 

Organizational 

Employment disruptions due to new technology implementation [36].  

Employee resistance to change [37]. 

Lack of qualified employees to manage and maintain IIoT systems [38]. 

Educational 

Poor IoT education [39]. 

Government support and regulations [40]. 

Legal and regulatory standards [41]. 

Financial 

Affordability of technology [42]. 

High-Implementation costs [43]. 

High-Operating costs [44]. 

This study focuses on the financial barriers to IIoT adoption, and the rest of the paper proceeds as follows, the 

Literature Review section critically examines the financial barriers to IIoT adoption, exploring existing solutions and 

assessing the cost-effectiveness analysis of IIoT within SMEs; the Material & Methods section details the study’s 

methodology and describes the dataset used; the Results and Discussion section presents the findings and contextual 

analysis respectively; the Discussion section critically discuss the observations from this investigation with existing 

literature; and the Conclusion section summarizes the study’s key insights and limitations. 

2. Literature Review 

Given globalization and market liberalization progress, Small and Medium Enterprises (SMEs) must continuously 

innovate to keep their competitive advantage. Embracing advanced technologies, such as the Industrial Internet of 

Things (IIoT), is crucial for these innovations and to stay competitive [45,46]. The IIoT revolutionizes manufacturing 
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by allowing devices within facilities to connect, interact, and exchange data, thereby optimizing operational efficiency 

and opening new avenues for innovation [47]. Although IIoT offers innovative solutions with the potential to transform 

manufacturing industries, the transition is not without challenges, with financial barriers being a primary concern for 

businesses considering its adoption. 

The cost-intensive nature of IIoT, necessitated by the need for robust, reliable, and high-performing devices 

suitable for complex production environments, poses significant financial challenges [48]. These include not only the 

initial investment in technology and the constraints posed by a limited number of suppliers [49], but also the ongoing 

operational expenses—such as energy and power management, energy consumption, and costs related to system updates 

and cybersecurity [50].  

Addressing the financial barriers to IIoT adoption requires an examination of methods outlined in existing research, 

which reveal strategies for mitigating these financial challenges. One approach to reducing operational costs is the 

application of predictive methods. Data prediction, particularly through machine learning, identifies inefficiencies for 

immediate correction and optimizing workflows. For example, Sharma and Obaidat describe an affordable smart 

farming system that uses IoT and machine learning to provide real-time agricultural insights, although it does not fully 

account for the implementation costs [20]. Although this paper highlights the need for cost-effective solutions through 

real-time monitoring and predictive analysis, it lacks a detailed breakdown of the implementation costs associated with 

establishing or maintaining the IoT infrastructure.  

Another aspect of cost reduction is the design of low-cost IIoT devices. The IoT-Q-Band, proposed by Singh et al., 

presents the IoT-Q-Band, which achieves cost-effectiveness through a minimalist design and repurposing smartphone 

components. However, this emphasis on cost-saving raises questions about long-term durability and electronic waste [51]. 

On a broader scale, Ciuffoletti proposes a holistic framework for cost evaluation that emphasizes community involvement 

and the use of established technologies for cost reduction. Despite its comprehensive approach, this framework does not 

account for ongoing operational and maintenance expenses, highlighting an area for further research [52]. 

Research has extensively explored strategies for creating cost-effective IoT devices, focusing on reducing 

operational costs and simplifying components. Despite these innovations, the high costs associated with IIoT 

technologies remain a significant barrier to their adoption in manufacturing [53]. The hesitancy is exacerbated by 

uncertainties surrounding the financial returns and profitability of such investments [54]. This study seeks to contribute 

to the field by conducting a detailed cost-effectiveness analysis of IIoT adoption, aiming to clarify the economic value 

proposition for manufacturing facilities.  

Related research has been undertaken to provide a conceptual framework for cost-effective analysis of IIOT 

adoption. Lee & Lee applied NPV and real options methods to evaluate investment opportunities, noting the advantages 

of flexibility in investment decisions but also the complexity and dependency on uncertain projections [55]. Mitake et 

al. offered a life cycle cost evaluation method, which, while useful for Return of Investment (RoI) calculations, relies 

heavily on interview data and is subject to regional cost variability [56]. Prajapati et al. developed an IoT-embedded 

supply chain model for the textile industry, showing substantial cost implications from IoT integration but basing their 

findings on simulated data [57]. Similarly, Rose et al., utilized advanced benefit-cost analysis for low-cost flood sensors, 

with their primary limitation being the benefit estimation which was addressed through sensitivity analysis [58].  

Altogether, existing research on the cost-effectiveness of IIoT systems within the industrial sector has concentrated 

on three main activities: designing low-cost IIoT devices to reduce implementation costs, strategizing to lower 

operational expenses, and developing conceptual frameworks for analyzing the cost implications of IIoT adoption. 

Despite these efforts, a significant gap persists in the form of a methodologically robust, evidence-based examination 

of actual IIoT adoption costs and savings in the industry. Previous research highlights the potential of IIoT technologies 

to significantly enhance productivity and efficiency, yet facilities remain hesitant to adopt these technologies due to 

uncertainties around cost savings not sufficiently offsetting the initial costs. This study aims to address this hesitancy 

by analyzing a comprehensive database that records projected IIoT implementation costs and the anticipated cost 

savings from its adoption. Our goal is to determine whether the hesitancy stems from concerns that cost savings do not 

effectively counterbalance implementation costs. Should the evidence suggest that the savings indeed outweigh these 

costs, our findings will spotlight further opportunities for embracing IIoT systems, thereby contributing a new, 

evidence-based methodology to the discourse on IIoT adoption in the industry. 

While existing studies provide valuable insights into cost-effective strategies and assessment frameworks for the IIoT, 

there remains a significant gap in empirical research that quantifies the implementation costs and savings for U.S. 

manufacturing SMEs. This paper identifies this gap and offers a detailed empirical analysis to evaluate the cost-effectiveness 

of IIoT investments for these enterprises, both as an initial investment and in terms of their long-term financial impact. 
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3. Materials and Methods 

3.1. Research Hypothesis  

Addressing the significant gap in empirical research, this paper investigates the cost-effectiveness of IIoT adoption 

within various U.S. manufacturing classifications. It uses inferential statistical methods, particularly hypothesis testing, 

to assess if projected savings outweigh implementation costs, thereby supporting or refuting cost-saving assumptions 

[59]. This approach enables the derivation of generalized predictions about the financial benefits of IIoT technologies 

from sample data [60]. The adoption of this method could influence the broader acceptance of IIoT in manufacturing 

by showcasing potential cost efficiencies and guiding strategic resource allocation and may catalyze broader IIoT 

acceptance by underscoring potential efficiencies. Therefore, the data was collected to assess whether the projected cost 

savings (PSAVED) and implementation costs (IMPCOST) are statistically different from each other. The following 

hypothesizes were tested to explore these relationships: 

● Null Hypothesis (H0): There is no significant difference between the cost savings and the implementation cost: 

H0: μ PSAVED = μ IMPCOST;  

● Alternative Hypothesis (H1): There is a significant difference, specifically, that the cost savings are greater than 

the implementation cost: H1: μ PSAVED > μ IMPCOST. 

3.2. Data Collection 

The data collected in this study is based on the publicly available Industrial Assessment Centers (IACs) database, 

which compiles comprehensive energy assessments for SMEs throughout the United States. The database records the 

projected implementation costs and cost savings of IoT devices derived from detailed energy audits. The IACs have 

calculated the implementation cost and cost savings based on the attributed energy assessment of each SME [61]. This 

database has been featured in several research papers. For example, Qiu et al. used this database for its relevant data on 

energy efficiency adoption decisions by such manufacturing facilities when recommended by IACs [62]. Abadie et al. 

leveraged this data to analyze decisions regarding energy efficiency investments [63]. 

The IACs, supported by the U.S. Department of Energy’s Office of Manufacturing and Energy Supply Chains, 

provide recommendations to enhance energy efficiency, reduce waste, and improve productivity, which includes the 

adoption of IIoT technologies. The IACs operate under the Office of Manufacturing and Energy Supply Chains 

(MESC), a department within the U.S. Department of Energy (U.S. DoE) [64]. The primary objective of the IACs, 

supported by MESC, is to enhance energy efficiency in small and medium-sized manufacturing plants across the United 

States [65]. The IACs’ recommendations aim to improve productivity, reduce waste, and save energy [66].  

This study investigates the recommendation assessments of IIoT technologies which is classified as productivity 

enhancement in Section 4. To achieve this, the IAC database, containing 20,911 assessments conducted from 1981 to 

2023, was utilized [67]. Although the dataset spans a broad timeframe, recommendations for IIoT adoption have been 

emerging since 2019 [68]. This temporal distinction allows the analysis to concentrate on recent economic trends and 

practices for IIoT recommendations. The research delves into variables pertinent to IIoT recommendation. Table 2 

provides definitions of the variables extracted from the IAC Database. 

Table 2. Key Variables Extracted from the IAC Database [69]. 

Variable Definition 

SIC Standard Industrial Classification Code. 

STATE Abbreviation of the State where the energy assessment has been performed. 

PSAVED 

Annual Projected Cost Savings refer to the financial benefits a facility’s manager could anticipate from adopting 

IIoT technologies. In simpler terms, these savings have a positive effect on the facility’s budget by decreasing 

expenses compared to scenarios without this technology. 

IMPCOST 
The Projected Implementation Cost includes either the capital component (i.e., equipment and IIoT materials) or 

labor costs. This expenditure represents a negative impact on the facility’s budget during the installation phase. 

To gain a comprehensive understanding of the IIoT recommendation, this study details the procedure of energy 

assessments as performed by IACs. The energy assessment begins with a questionnaire requesting basic information about 

the facility and its energy usage. The IAC team then examines the facility’s energy consumption patterns, including spikes, 

and conducts an exhaustive assessment tour to gather more data. Meetings with facility staff are held to review findings 

and discuss potential recommendations. The results are documented in a report and submitted for review. After 60 days, 
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the report is dispatched to the facility staff. A follow-up survey is conducted 6 to 9 months later to ensure the effectiveness 

of the recommended changes [70]. The IAC program is among many initiatives aiming to mitigate the adverse impacts of 

industrialization on the environment by reducing energy consumption and enhancing energy efficiency in manufacturing 

facilities. Figure 1 illustrates the energy assessment process undertaken by the Industrial Assessment Centers. 

 

Figure 1. The Process of Energy Assessment is Conducted by the IACs. 

Before conducting the statistical analysis, an exploratory data analysis was performed to assess the 

comprehensiveness of the dataset. This analysis encompassed an examination of the spectrum of identified operational 

practices related to IIoT for SMEs, the geographic distribution across various U.S. states, and the diversity of Standard 

Industrial Classification (SIC) codes where the IIoT adoption has been recommended. The following subsections 

describe these variations to fulfill the scope of this study. 

3.3. IIoT-related Energy Assessment Recommendations 

The Center for Advanced Energy Systems (CAES) at Rutgers University has created a technical manual book that 

compiles all recommendations from the IACs [71]. The manual was divided into two main sections: energy management 

and waste minimization/pollution prevention. These sections encompass nine key areas of focus, including combustion 

systems, thermal systems, electrical power, motor systems, industrial design, operations, building and grounds, ancillary 

costs, and alternative energy usage [72]. Over time, the manual has undergone regular updates and continuous 

improvements. In the current manual, version 21.1, the scope has expanded with the inclusion of an additional area: 

productivity enhancements in section 4 [73]. The Industrial Internet of Things recommendations are subsections of 

productivity enhancements. This code falls within the ‘reduction of downtime’ category, a subdivision of direct 

productivity enhancements. According to the manual, the IIoT recommendation is divided into four levels, which 

correspond to operational practices as follows: 

(a) Level Zero—Install Control Systems for Existing Equipment 

The focus of this recommendation is on integrating control mechanisms into existing equipment. IIoT devices 

could automate the monitoring, inspection, and control of industrial equipment and processes [74]. An example could 

be the addition of temperature sensors to a traditional HVAC system to collect environmental data, which can be used 

to automate and optimize the HVAC’s operations, improving energy efficiency and system responsiveness [75]. 

(b) Level One—Add Communication Using IIoT Devices to Existing Control System to Modify Operations 

In this recommendation, the key focus is on integrating network components such as IoT gateways, routers, and 

switches into existing control systems. This integration facilitates the transmission of data from IoT devices to a central 

system or the cloud, enabling remote monitoring and basic data analytics [76]. The core idea behind this 

recommendation is to enhance existing control systems with IIoT devices, empowering them to adapt operations in real 

time based on incoming data. This transformation fosters a more connected and responsive industrial environment [77]. 

Furthermore, this integration plays a pivotal role in realizing the principles of Industry 4.0, effectively turning machines 

into interconnected elements within a larger and communicative ecosystem [78].  

(c) Level Two—Install Control System Using IIoT Devices with Communication Capabilities to Store Data to the Cloud 

This recommendation extends beyond mere communication enhancements of previous integrations, introducing 

advanced IIoT devices equipped with superior communication functionalities directly linked to cloud platforms. This 

direct cloud connectivity offers on-demand, flexible computing services [79]. In the cloud, this data can be used for 

predictive maintenance, optimizing production workflows, and enhancing overall operational efficiency [80]. 
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(d) Level Three—Install or Modify the Control System with Communication and non-local External Information (i.e., 

Weather Forecast) to Enable Better Decision-making 

This strategy emphasizes the integration of external data sources, such as weather forecasts, into the control 

systems. By incorporating real-world information, industries can make more informed, context-aware decisions that 

directly impact operational efficiency and responsiveness [81]. It also enables industries to make informed decisions, 

improving efficiency and responsiveness.  

In this study, all levels (i.e., operational practices) shown above were analyzed. Figure 2 shows the frequency 

distribution of each level of IIoT recommendations obtained from the 62 assessments. Level 0 and level 1 had the most 

identified assessment recommendations. Therefore, this study provides an analysis of all IIOT recommendations, with 

the majority of identified recommendations concentrated at levels 0 and 1. To acknowledge the limited number of levels 

2 and 3, this research paper suggests future research, with a more balanced representation across all levels, to provide a 

deeper insight into the full spectrum of IIoT recommendations. 

 

Figure 2. Frequency Distribution of IIoT Energy Assessment Recommendations based on IAC’s Level. 

3.4. Geographical Variation of IIoT-related Energy Assessment Recommendations 

The locations of the assessments where IIoT adoption has been recommended by IACs are visualized in Figure 3. 

The colors of the states indicate the frequency of recommendations where IIoT adoption is identified, and the numbers 

indicate the relative quantity of assessments in each region. 

 

Figure 3. Geographical Variation of IIoT Energy Assessment Recommendations. 
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3.5. Data Distribution in Terms of SIC Variable 

The IIoT technology holds potential for use in industries that require the collection and analysis of data from 

machines and devices. Figure 4 displays the Standard Industrial Classification (SIC) codes of the industries where IIoT 

technology has been recommended.  

Based on the IAC Database, the IIoT energy assessment recommendations were identified within 25 SICs. The 

sewerage systems (SIC 4952) were the most prevalent SIC where the IACs identified there are potential cost savings 

through adopting the IIoT technology. Industrial IoT sensors can be instrumental in monitoring wastewater flow, aiding 

in the early detection of potential issues such as blockages or leaks [82]. This was followed by SIC 2051 (bread, cake, 

and related products) with 6 out of 62 recommendations (approximately 10%) and SIC 3841 (surgical and medical 

instruments) with 5 out of 62 recommendations (about 8%). 

 

Figure 4. SIC Variation of IIoT Energy Assessment Recommendation. 

4. Results  

This study empirically examines the cost-effectiveness of IIoT adoption across different U.S. manufacturing 

sectors by employing hypothesis testing to compare projected implementation costs with annual savings. The research 

aims to determine if the anticipated cost savings significantly differ from the actual implementation costs, potentially 

influencing the wider adoption of IIoT through demonstrated economic benefits.  

Before performing the data analysis, the descriptive statistics for both IMPCOST and PSAVED were analyzed 

using JMP Pro software version 17.0.0. JMP Pro is predictive analytics software developed by the JMP business unit 

of the SAS Institute [83]. Results obtained from JMP Pro are presented in Table 3.  

Given the results obtained from the JMP Pro software, it was found that both variables had skewness to the right, 

indicating that the values are not symmetrically distributed around the mean. A positive skew indicates a longer right 

tail with values clustered to the left of the mean [84]. It also highlighted uncertainties in accurately estimating the 

average cost savings and implementation costs. 
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Table 3. Descriptive Statistics of IMPCOST and PSAVED. 

Variable IMPCOST ($) PSAVED ($) 

Mean 22,054.565 58,087.661 

Std Dev 78,186.799 87,275.319 

Std Err Mean 9929.7335 11,083.977 

Upper 95% Mean 41,910.294 80,251.442 

Lower 95% Mean 2198.835 35,923.88 

N 62 62 

Skewness 5.174 1.985 

Kurtosis 26.477 2.908 

N Missing 0 0 

Furthermore, the substantial standard deviations observed for both IMPCOST and PSAVED point to a considerable 

spread of values, further confirming the significant variability within the data set. The standard error of the mean and 

the upper and lower bounds of the 95% confidence interval for both variables provide additional evidence of this 

variability, indicating the range within which the true population mean is likely to fall. With an equal number of 

observations (N = 62) for both variables, the analysis rests on a balanced and comparable dataset. Figure 5 and Figure 

6 visually represent the skewness, underscoring the non-normal distribution of the data. The histograms use seven 

brackets to illustrate the distribution of data. The histogram of cost savings reveals a concentration of 40 observations 

in the lower savings bracket ($451 to $47,959), indicating that most projected savings are modest. Correspondingly, the 

histogram for implementation costs exhibits a right skew, with the majority of observations, 58 in total, residing in the 

lowest cost bracket ($0 to $70,000), which indicates that lower implementation costs are more frequently observed. 

 

Figure 5. Histogram of PSAVED variable (Projected Cost Savings through IIoT adoption). 

 

Figure 6. Histogram of IMPCOST variable (Projected Implemented Cost through IIoT adoption). 
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Since both variables are not normally distributed, the non-parametric Mann-Whitney U test was employed to 

compare their distributions. The Mann-Whitney U test evaluates whether two independent samples come from the same 

distribution by comparing their ranks [85]. The samples were entered into the Mann-Whitney U function to test the one-

tailed hypothesis. Python Programming language was executed to perform the tests (https://gist.github.com/f-

ghafari/8ea9a917015a6bb905aef3b2208875eb). The outcomes from the Mann-Whitney U test are as follows: 

● U1: 999.5 

● U2: 2844.5 

● U statistic: 999.5 

● p-value: <0.0001 

● z-score: −4.610 

● Critical U: 999.50 

Results from hypothesis testing show a p-value of less than 0.001. As this is below the 5% significance level, the 

null hypothesis was subsequently rejected. This indicates a statistically significant difference, with the projected 

implementation cost being lower than the projected cost savings from IIoT. From a practical standpoint, the results 

imply that IIoT adoption is not only operationally beneficial for SMEs, but it also suggests financial prudence, 

potentially leading to significant cost-trade-off. 

5. Discussion 

This research paper provided a new perspective of cost-effective analysis of IIoT technologies in industry, 

indicating a statistically significant difference at a 95% confidence level between the implementation costs and savings 

of IIoT adoption in SMEs. This study aligns with the theoretical propositions suggesting that IIoT investments offer 

potential financial flexibility [55]. However, the empirical evidence extends this narrative by quantifying the extent to 

which projected cost savings can offset the initial high costs of implementation, a question that has remained largely 

theoretical in existing studies. Critically comparing the results with Lee and Lee’s discussion on the advantages of 

investment flexibility reveals a crucial insight: while flexibility is inherently valuable, the direct financial return, as evidenced 

by this study, provides a more compelling justification for SMEs contemplating IIoT adoption. This distinction underscores 

the importance of empirical data in supporting theoretical models and decision-making processes. 

Furthermore, this research addresses a gap identified by previous studies, which relied on interview data and 

simulated models to evaluate IIoT’s cost implications [56,57]. By utilizing real-world data from the IAC database, this 

study provides a grounded understanding of the financial dynamics of IIoT adoption, offering a more reliable basis for 

SMEs to evaluate the cost-benefit ratio of such technological investments. 

The practical implications of our findings also resonate with the challenges of high implementation costs [22]. 

However, our analysis moves beyond identifying the problem to providing a quantifiable analysis that the anticipated 

benefits of IIoT adoption, across a variety of industrial contexts indicated by the diversity of SIC codes in our sample, 

significantly outweigh these initial costs. This directly addresses the hesitancy rooted in financial uncertainties that 

many SMEs face, offering a clear economic rationale for embracing IIoT technologies. 

In engineering terms, the implications of our findings extend beyond the immediate financial considerations. 

Although the high upfront costs of IIoT adoption have been a deterrent, this study highlights that the return on 

investment, in terms of cost savings, justifies these expenditures. This serves as an important awareness piece for SMEs, 

suggesting that the initial financial barriers can indeed be overcome. More critically, it positions IIoT technologies not 

merely as cost centers but as strategic investments capable of enhancing operational efficiency and securing competitive 

advantages in the marketplace. 

6. Conclusions 

IIoT is a transformative technology in industrial facilities, crucial for automating and optimizing operations, 

enhancing efficiency, and facilitating sustainable, informed decision-making through real-time insights. Nevertheless, 

manufacturing facilities have concerns about its adoption. This study investigated the challenges surrounding the 

adoption of IIoT, classifying the barriers into technological, organizational, educational, and financial categories. 

Despite numerous studies addressing financial barriers, there remains a conspicuous absence of empirical research 

into the actual cost-effectiveness of IIoT technology within the U.S. industry. Prior research has focused on three 

primary areas: the design of low-cost IIoT devices to reduce implementation costs, strategies to minimize operational 

expenses, and the development of conceptual frameworks for analyzing the cost implications of IIoT adoption. Yet, the 
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potential of IIoT technologies to significantly boost productivity and efficiency is overshadowed by the hesitancy of 

facilities to adopt these technologies, largely due to uncertainties about whether the anticipated cost savings effectively 

outweigh the initial investment. 

To mitigate this hesitancy, our research aimed to provide a methodologically robust, evidence-based examination of 

actual IIoT adoption costs and savings within the industry. By analyzing a comprehensive database that records projected 

IIoT implementation costs alongside anticipated cost savings from its adoption, we sought to uncover whether the 

reluctance to adopt IIoT stems from concerns that the cost savings do not adequately counterbalance the implementation 

costs. This approach allowed us to explore whether the evidence supports the notion that the financial benefits of IIoT 

adoption surpass these initial costs, thereby highlighting further opportunities for the industry to embrace IIoT systems. 

The publicly available IAC database, which provides energy assessment data throughout the United States, was 

analyzed. The data covered a variety of 10 states, 25 Standard Industrial Classifications (SICs), and 4 operational 

practices (levels) IIoT energy assessment recommendations. A descriptive statistical analysis of implementation costs 

and cost savings was tested for normality. Given that they were not normally distributed, non-parametric hypothesis 

testing was performed. It was observed that the initial implementation costs were lower than the potential cost savings, with 

a statistically significant difference at a 95% confidence level. Practically, this empirical evidence challenges the prevailing 

hesitancy by quantitatively demonstrating the economic viability of IIoT adoption in U.S. manufacturing SMEs. 

The IAC database does not allow the determination of which factors the IAC teams considered when estimating 

implementation costs and cost savings associated with IIoT adoption. Therefore, the outcomes of this study are based 

on estimated projections rather than actual savings and costs after installation, which imposes certain constraints and 

suggests avenues for future research. Another limitation is the focus on specific 25 SIC codes and a limited sample size 

of 62 IIoT energy assessment recommendations, which may affect the generalizability of the findings. Future research 

could improve these insights by including a larger and more diverse sample. The limited assessments identifying levels 

2 and 3 of IIoT integration within the IAC database indicate a lack of comprehensive data on advanced IIoT integration, 

pointing to further areas for inquiry. 

The implications of our study suggest avenues for future research, particularly in extending the analysis beyond 

initial investment assessments to include lifecycle cost assessments and refining predictive models for more accurate 

forecasts of IIoT adoption cost savings. Furthermore, the need for a more comprehensive data set on advanced IIoT 

integration is evident, pointing to further areas for inquiry. Through this study, we contribute a new, evidence-based 

methodology to the discourse on IIoT adoption in the industry, addressing a notable gap in existing research and paving 

the way for a broader acceptance and implementation of IIoT technologies in the manufacturing sector. 
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