

https://doi.org/10.35534/dav.2024.10007

Article

Optimized Real Time Single-Drone Path Planning for Harvesting

Information from a Wireless Sensor Network

Ramkumar Ganapathy and Christopher Thron *

Texas A&M University-Central Texas, Killeen, TX 76549, USA; ganapathy.ramkumar@gmail.com (R.G.)

* Corresponding author. E-mail: thron@tamuct.edu (C.T.)

Received: 12 January 2024; Accepted: 30 May 2024; Available online: 12 June 2024

ABSTRACT: We consider a remote sensing system in which fixed sensors are placed in a region, and a single drone flies over the

region to collect information from cluster heads. We assume that the drone has a fixed maximum range and that the energy consumption

for information transmission from the cluster heads increases with distance according to a power law. Given these assumptions, we

derive local optimum conditions for a drone path that either minimizes the total or maximum energy required by the cluster heads to

transmit information to the drone. We show how a homotopy approach can produce a family of solutions for different drone path

lengths so that a locally optimal solution can be found for any drone range. We implement the homotopy solution in Python and

demonstrate the tradeoff between drone range and cluster head power consumption for several geometries. Execution time is sufficiently

rapid for the computation to be performed in real time so that the drone path can be recalculated on the fly. The solution is shown to be

globally optimal for sufficiently long drone path lengths. A proof of concept implementation in Python is available on GitHub. For future

work, we indicate how the solution can be modified to accommodate moving sensors.

Keywords: Wireless sensor network; Drone; Path planning; Information collection; Power-efficient; Extended lifetime; Optimization

© 2024 The authors. This is an open access article under the Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

There are many critical applications for remote sensing in low-resourced areas. Some of these include agricultural

monitoring of crops and/or forests for fire and/or disease; wildlife monitoring to track wildlife movement and detect

poachers; free-range livestock monitoring to track herd movement and to prevent cattle rustling; and early warning of

terrorist or bandit activity. In low-resourced situations especially, the system cost is of huge importance and spells the difference

as to whether or not the system may be implemented. Sensors in area-monitoring networks typically are battery-powered and

must be replaced when their batteries are exhausted. This can be both difficult and costly, particularly in inaccessible locations.

For this reason, reducing the power consumption of sensors in the field is a key factor in designing such remote sensing systems.

One possible approach to reducing power consumption, which has been investigated by a number of researchers, is to

supplement the WSN with unmanned aerial vehicles (UAV) such as drones fitted with receiving antennas and either

information storage or transmit capabilities. Such drones can serve as moveable sinks or relays, travelling to or near the

transmitting elements within the network in order to reduce transmission distance, hence power expenditure.

Previous authors have investigated practical use cases for using drones to collect information from WSN’s. [1,2] have

provided comprehensive surveys of drone-assisted data collection from wireless sensor networks. The integration of UAVs

into surveillance systems involving WSNs and other technologies is discussed in [3]. Several previous papers have dealt

specifically with drone path planning in various scenarios. References [4,5] assess several metaheuristic algorithms for path

planning in the context of disaster management and pre-planning. [6] gives a heuristic algorithm to decide which node

within a cluster to fly to so as to gather information from the cluster. [7] uses a boustrophedon-type (i.e., back-and-forth)

flight path for a sensor network located in a region divided into square cells. [8] considers the problem of minimizing the

Drones and Autonomous Vehicles 2024, 1, 10007 2 of 17

flight time of an information-gathering drone in the case where sensors are in a straight line, and the time required for

information transfer from each sensor is an important consideration. [9] considers the impact of drone path shape on

information transmission from sensors to drones. [10] uses particle-swarm optimization to arrive at an optimal path. [11]

presents an efficient joint data collection and sensor positioning scheme for WSN supported by multiple UAVs.

In low-resource situations, expense is a paramount concern in systems design. Systems with multiple drones may not

be feasible because of the expense. On the other hand, systems with a single drone must accommodate the limiteddrone

range. If the drone takes several trips to reach all sensors, this delays the receipt of information and reduces the

thoroughness of coverage. In such cases, it may be preferable to design a drone tour of all sensors that approaches the

sensors as closely as possible.

In this paper, we consider a hybrid WSN-drone system for remote sensing, in which a single drone of limited range is

used to collect information from wireless sensors that have fixed locations in the field (see Figure 1). The drone harvests

information from all sensors during a single tour. The system design is posed as a constrained optimization problem. Our

novel solution approach involves using a Lagrange multiplier to construct a differential equation in which the Lagrange

multiplier is the independent variable. Since our approach reduces the problem to the numerical solution of a multivariate

ordinary differential equation (ODE), it can make use of efficient, highly developed algorithms for solving ODEs, thus

reducing execution time and making it possible to compute optimal trajectories on-the-fly for very large WSNs.

Figure 1. Schematic of remote sensing system in which a drone harvests information from fixed sensors (copied from Reference [1]—

open access, no permission required https://www.mdpi.com/openaccess).

2. Methodology

2.1. System Assumptions

We consider a remote sensing system that satisfies the following assumptions:

(A1) The system includes a wireless sensor network with predetermined cluster heads. Each sensor in the field transmits

its information (either directly or indirectly) to one of the cluster heads.

(A2) The system also includes a drone that flies on a specific trajectory (to be determined) so that each cluster head

transmits its energy to the drone when it is nearby.

(A3) The drone’s energy consumption is determined entirely by the length of the drone’s trajectory. (This is the case

for example, if the drone flies at a constant velocity, and there is no wind or other conditions that would affect the

flight of the drone.)

(A4) The drone has a fixed maximum path length, which is determined by the energy capacity of the battery and the

rate of energy consumption.

(A5) The drone’s location is approximately constant while receiving information from a particular cluster head. This

Drones and Autonomous Vehicles 2024, 1, 10007 3 of 17

assumption is satisfied in either of the following scenarios: (a) the information transmission from the cluster head

occupies only a brief period of time, so that the distance the drone moves during the transmission period is negligible;

or (b) the drone slows, hovers, or lands during transmission, and consumes no energy during the transmission period.

(A6) The energy expended by the cluster head in information transmission is proportional to the distance between the

cluster head and drone raised to a power law exponent.

We also consider two alternative criteria for optimization:

(𝑂1) Minimize the total energy expended by cluster heads in information transmission.

(𝑂2) Minimize the maximum energies expended by cluster heads in information transmission.

The choice of suitable optimization criterion will depend on the particular circumstances of the WSN. For example, in a

system with many potential alternative cluster heads, then the maximum consumption among cluster heads may be less

important than overall power consumption, so criterion 𝑂1 may be appropriate. On the other hand, if there are few choices for

cluster head, then the cluster head with maximum energy expended will need frequent replacement, so criterion 𝑂2 may be a

better option. We note that other criteria besides 𝑂1 and 𝑂2 are possible, with minimal changes to the solution, as we indicate

in Section 5.

Under assumptions (𝐴1)–(𝐴6) and criteria (𝑂1)–(𝑂2), it follows that an optimum path for the drone will consist of straight-

line segments joining the drones’ locations where it harvests energy from the different cluster heads. This conclusion is

reflected in the mathematical description in subsequent sections.

2.2. System Parameters and Variables

The system parameters include:

• (xj, yj), j = 1...J: positions of the cluster heads that are sending the information;

• L: Maximum path length for the drone;

• p: Power loss exponent.

The system variables include:

• (𝑢𝑗, 𝑣𝑗), j = 1...J : Drone positions for harvesting information from cluster heads. Here, the order of points the

drone takes is assumed to be (𝑢𝑗, 𝑣𝑗) to (𝑢𝑗+1, 𝑣𝑗+1) for 𝑗 = 1 . . . 𝐽 − 1.

• (𝑢0, 𝑣0), (𝑢𝐽+1, 𝑣𝐽+1): Drone starting and ending position, respectively.

2.3. Mathematical Formulation of the Optimization Problem

Information transmission from cluster head (xj, yj) takes place when the drone is at position (uj, vj). The total energy

consumption required for information transfer is the sum of the energies from the 𝐽 cluster heads, which following

assumption (A6), can be represented as a function f (⃗u, ⃗ v):

𝑓(�⃗⃗�, �⃗�) = ∑((𝑥𝑗 − 𝑢𝑗)
2
+ (𝑦𝑗 − 𝑣𝑗)

2
)
𝑝/2

,

𝐽

𝑗=1

 (1)

where �⃗⃗�:= [u1,….uJ] and �⃗�:= [v1,….vJ].

The distance the drone travels is given by 𝑔(�⃗⃗�, �⃗�), where

𝑔(�⃗⃗�, �⃗�) = ∑ √(𝑢𝑗 − 𝑢𝑗+1)
2
+ (𝑣𝑗 − 𝑣𝑗+1)

2
𝐽

𝑗=0

. (2)

The drone’s limited range imposes the constraint g (u⃗ , ⃗v) ≤ L, where L is the maximum distance the drone can travel.

In the case where L is large enough so that the drone is capable of making a complete tour of the cluster heads, then any

such complete tour will give g(u⃗ , ⃗ v) = 0 and is thus an optimal solution to the problem. So we consider instead the more

difficult problem where L is smaller than the smallest tour distance, so 𝑔(�⃗�, 𝑣) = 0 is impossible. In this case, we may replace

Drones and Autonomous Vehicles 2024, 1, 10007 4 of 17

the inequality with an equality constraint. This can be seen as follows. Suppose a drone path includes the point (uj, vj) where

|(uj, vj) − (xj, yj)| > 0. For simplicity, we define:

�⃗⃗⃗�𝑗: = �⃗⃗⃗�𝑗(𝑢𝑗, 𝑣𝑗)𝑎𝑛𝑑 𝑧�⃗⃗�: = (𝑥𝑗, 𝑦𝑗). (3)

Then, for any δ with 0 < δ ≤ 1, we have

|�⃗⃗⃗�𝑗 + 𝛿(�⃗�𝑗 − �⃗⃗⃗�𝑗) − �⃗�𝑗| = (1 − 𝛿)|�⃗⃗⃗�𝑗 − �⃗�𝑗| < |�⃗⃗⃗�𝑗 − �⃗�𝑗|, (4)

so replacing �⃗⃗⃗�𝑗 with �⃗⃗⃗�𝑗 + δ (�⃗⃗�𝑗 − �⃗⃗⃗�𝑗) will reduce the energy function (1). Now, if the drone path length is less than L, then

δ > 0 can be chosen sufficiently small such that replacing �⃗⃗⃗�𝑗 with �⃗⃗⃗�𝑗 + δ (�⃗⃗�𝑗 − �⃗⃗⃗�𝑗) still yields total drone path length of less

than L. Thus, any drone path with a length less than L can be improved—so no drone path with a length less than L can be

optimal.

We may now formulate the optimization problem. In case (𝑂1), we have

Minimize 𝑓(�⃗⃗�, �⃗�)subject to 𝑔(�⃗⃗�, �⃗�) = 𝐿. (5)

In case (𝑂2), minimizing the maximum transmission energy is equivalent to minimizing |�⃗⃗⃗�𝑗 − 𝑧𝑗 | over all 𝑗. Using

the equality

lim
𝑝→∞

(𝑎1
𝑝

+ ⋯+ 𝑎𝐽
𝑝
)
1/𝑝

= max
𝑗

𝑎𝑗 𝑖𝑓 𝑎𝑗 > 0 ∀𝑗, (6)

with 𝑎𝑗 ∶= |�⃗⃗⃗�𝑗 − 𝑧𝑗|, we conclude that by taking 𝑝 sufficiently large, we can approach the solution to (𝑂2) with arbitrary

precision.

2.4. Local Optimization Conditions

The minimization problem (5) leads to the following Lagrange multiplier condition for a local minimum:

∇𝑓(�⃗⃗�, �⃗�) =λ∇(𝑔(�⃗⃗�, �⃗�) − 𝐿), (7)

where ∇h denotes the gradient of ℎ with respect to (�⃗⃗�, �⃗�):

∇ℎ(�⃗⃗�, 𝑣):= (
𝜕𝑓

𝜕𝑢1
, …

𝜕𝑓

𝜕𝑢𝑗
,
𝜕𝑓

𝜕𝑣1
, …

𝜕𝑓

𝜕𝑣𝑗
), (8)

and λ is a Lagrange multiplier.

Writing the vector Equation (7) out in terms of components, we have:

𝜕𝑓

𝜕𝑢𝑗
= λ

𝜕𝑔

𝜕𝑢𝑗
;

𝜕𝑓

𝜕𝑣𝑗
=λ

𝜕𝑔

𝜕𝑣𝑗
, (𝑗 = 1… 𝐽) (9)

For notational simplicity, we define new variables. For 𝑗 = 1… . 𝐽, let

𝑎𝑗 ≔ 𝑢𝑗 − 𝑥𝑗; 𝑏𝑗 ≔ 𝑣𝑗 − 𝑦𝑗; 𝐴𝑗 ≔ 𝑎𝑗
2 + 𝑏𝑗

2, (10)

𝑚𝑗 ≔ 𝑢𝑗 − 𝑢𝑗+1; 𝑛𝑗 ≔ 𝑣𝑗 − 𝑣𝑗+1; 𝑀𝑗 ≔ (𝑚𝑗
2 + 𝑛𝑗

2)
1

2. (11)

Then we have:

𝑓(�⃗⃗�, �⃗�) = ∑ 𝐴𝑗
𝑝/2

𝐽

𝑗=1
 and 𝑔(�⃗⃗�, �⃗�) = ∑ 𝑀𝑗

𝐽

𝑗=0
. (12)

Using this notation, we have:

𝜕𝑓

𝜕𝑢𝑗
=

𝜕𝑓

𝜕𝐴𝑗
×

𝜕𝐴𝑗

𝜕𝑎𝑗
×

𝜕𝑎𝑗

𝜕𝑢𝑗
= ((

𝑝

2
)𝐴

𝑗

𝑝

2
−1

× 2𝑎𝑗 = 𝑝𝑎𝑗𝐴𝑗
𝑞 (13)

where 𝑞: =
𝑝

2
− 1, and

Drones and Autonomous Vehicles 2024, 1, 10007 5 of 17

𝜕𝑔

𝜕𝑢𝑗

=
𝜕𝑔

𝜕𝑀𝑗−1

×
𝜕𝑀𝑗−1

𝜕𝑚𝑗−1

×
𝜕𝑚𝑗−1

𝜕𝑢𝑗

+
𝜕𝑔

𝜕𝑀𝑗

×
𝜕𝑀𝑗

𝜕𝑚𝑗

×
𝜕𝑚𝑗

𝜕𝑢𝑗

= (
1

2
) 𝑀𝑗−1

−1 (2𝑚𝑗−1)(−1) + (
1

2
)𝑀𝑗

−1(2𝑚𝑗) =
𝑚𝑗

𝑀𝑗

−
𝑚𝑗−1

𝑀𝑗−1

. (14)

Similarly, we have:

𝜕𝑓

𝜕𝑣𝑗

= 𝑝𝑏𝑗𝐴𝑗
𝑞
;

𝜕𝑔

𝜕𝑣𝑗

=
𝑛𝑗

𝑀𝑗

−
𝑛𝑗−1

𝑀𝑗−1

. (15)

It follows that we may rewrite the equations in (9) as:

𝑝𝑎𝑗𝐴𝑗
𝑞 = 𝜆 (

𝑚𝑗

𝑀𝑗
−

𝑚𝑗−1

𝑀𝑗−1
); 𝑝𝑏𝑗𝐴𝑗

𝑞 = 𝜆 (
𝑛𝑗

𝑀𝑗
−

𝑛𝑗−1

𝑀𝑗−1
) (𝑗 = 1… . 𝐽). (16)

Equations (16) are required for local optimality and are necessary for global optimality but not sufficient. Thus, the

solutions that we provide in this paper may not be optimal for all global situations. We return to this issue in Section 2.8.

2.5. Homotopy Approach to Local Optimization for a Given Path Length

Solutions of the fundamental optimization problem (5) for different values of L correspond to solutions of (16) with

different values of λ. As L is varied continuously, the value of λ will also vary continuously, and the components of ⃗u and

⃗v will vary continuously as well. This suggests that if we have a solution to (5) for a given value of L, we may be able to

perturb that solution differentially to obtain solutions for different values of L. In fact, we do have a solution for a particular

value of L: namely 𝑓(�⃗⃗�, 𝑣) = 0 when uj = xj and vj = yj, which solves the constraint g(u⃗ , ⃗v) = L when L is equal to the

length of the tour that connects the points (�⃗�𝑗 , �⃗�𝑗) in consecutive order. The smallest value of 𝐿 for this type of solution

occurs when the points (�⃗�𝑗 , �⃗�𝑗) are ordered so that (𝑢0, 𝑣0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝐽, 𝑦𝐽), (𝑢𝐽+1, 𝑣𝐽+1) forms a “travelling

salesman” tour that connects all points (�⃗�𝑗 , �⃗�𝑗) with the smallest possible total length.

In practice, we want to find solutions corresponding to L values that are smaller than the length of a full tour. So we

start with the full tour and successively “nudge” the solutions so they correspond to smaller and smaller values of L. This

is an example of a homotopy approach: start with a solution that is optimal for a different set of conditions and generate a

smooth curve of solutions that joins this solution to a solution that satisfies desired conditions. In practice, this smooth curve

of solutions is often specified parametrically as the solution to a set of ordinary differential equations. In the next section,

we will derive differential equations that can be used to find the parametrized curve that leads to our desired optimal solution.

2.6. Derivation of Differential Equations for Parametrized Homotopy Curve

First, we parametrize solutions to (16) using the parameter s, so that 𝑎𝑗 , 𝑏𝑗 , 𝐴𝑗 , 𝑚𝑗 , 𝑀𝑗 , and λ are all functions of 𝑠.

As 𝑠 changes, the equalities cannot change, so we have

𝑝
𝑑

𝑑𝑠
(𝑎𝑗𝐴𝑗

𝑞
) =

𝑑

𝑑𝑠
(𝜆

𝑚𝑗

𝑀𝑗

− 𝜆
𝑚𝑗−1

𝑀𝑗−1

),

𝑝
𝑑

𝑑𝑠
(𝑏𝑗𝐴𝑗

𝑞
) =

𝑑

𝑑𝑠
(𝜆

𝑛𝑗

𝑀𝑗

− 𝜆
𝑛𝑗−1

𝑀𝑗−1

).

(17)

Since we want to find solutions for smaller values of 𝐿, we want to ensure that 𝐿 decreases as 𝑠 increases. We may

ensure this by adding the condition:

𝑑𝑔

𝑑𝑠
= −1 ⇒ ∑

𝑑𝑀𝑗

𝑑𝑠

𝐽

𝑗=0

= −1. (18)

Recall that the variables 𝑎𝑗, 𝑏𝑗, 𝐴𝑗 , 𝑚𝑗, 𝑀𝑗, in (17) are all functions of �⃗⃗� and �⃗�, so the derivatives in (17) can all be

expressed in terms of the derivatives
𝑑𝑢𝑗

𝑑𝑠
 and

𝑑𝑣𝑗

𝑑𝑠
 for 𝑗 = 1,… . . 𝐽. As a result, we obtain a system of 2𝐽 + 1 differential

equations for the variables {𝑢𝑗, 𝑣𝑗}, 𝑗 = 1… . 𝐽 and λ.

We may rewrite the first equation in (17) as (𝑗 = 1… . 𝐽):

Drones and Autonomous Vehicles 2024, 1, 10007 6 of 17

0 = 𝑝𝐴𝑗
𝑞 𝑑𝑎𝑗

𝑑𝑠
+ 𝑝𝑞𝑎𝑗𝐴𝑗

𝑞−1 𝑑𝐴𝑗

𝑑𝑠
−

𝜆

𝑀𝑗

𝑑𝑚𝑗

𝑑𝑠
+

𝜆

𝑀𝑗−1

𝑑𝑚𝑗−1

𝑑𝑠
+

𝜆𝑚𝑗

𝑀𝑗
2

𝑑𝑀𝑗

𝑑𝑠
−

𝜆𝑚𝑗−1

𝑀𝑗−1
2

𝑑𝑀𝑗−1

𝑑𝑠
−

𝑚𝑗

𝑀𝑗

𝑑𝜆

𝑑𝑠
+

𝑚𝑗−1

𝑀𝑗−1

𝑑𝜆

𝑑𝑠
 (19)

The derivatives in (19) may be expressed in terms of {
𝑑𝑢𝑘

𝑑𝑠
} and {

𝑑𝑣𝑗

𝑑𝑠
} using the formulas (𝑗 = 0… . . 𝐽):

𝑑𝑎𝑗

𝑑𝑠
=

𝑑𝑢𝑗

𝑑𝑠
;

𝑑𝐴𝑗

𝑑𝑠
= 2𝑎𝑗

𝑑𝑢𝑗

𝑑𝑠
+ 2𝑏𝑗

𝑑𝑣𝑗

𝑑𝑠
;

𝑑𝑚𝑗

𝑑𝑠
=

𝑑𝑢𝑗

𝑑𝑠
−

𝑑𝑢𝑗+1

𝑑𝑠
;

𝑑𝑀𝑗

𝑑𝑠
= 𝑀𝑗

−1 (𝑚𝑗 (
𝑑𝑢𝑗

𝑑𝑠
−

𝑑𝑢𝑗+1

𝑑𝑠
) + 𝑛𝑗 (

𝑑𝑣𝑗

𝑑𝑠
−

𝑑𝑣𝑗+1

𝑑𝑠
))

(20)

It follows that (19) with index j will depend on the derivatives
𝑑𝑢𝑘

𝑑𝑠
,

𝑑𝑣𝑘

𝑑𝑠
 and

𝑑𝜆

𝑑𝑠
 for 𝑘 = 𝑗 − 1, 𝑗, 𝑗 + 1 (noting

that
𝑑𝑢0

𝑑𝑠
=

𝑑𝑣0

𝑑𝑠
=

𝑑𝑢𝑗+1

𝑑𝑠
=

𝑑𝑣𝑗+1

𝑑𝑠
= 0. By collecting terms corresponding to each derivative, we find (𝑗 = 1… . . 𝐽):

0 =
𝑑𝑢𝑗

𝑑𝑠
(𝑝𝐴𝑗

𝑞
+ 𝑝𝑞𝑎𝑗𝐴𝑗

𝑞−1
(2𝑎𝑗) −

𝜆

𝑀𝑗

−
𝜆

𝑀𝑗−1

+
𝜆𝑚𝑗

2

𝑀𝑗
3 +

𝜆𝑚𝑗−1
2

𝑀𝑗−1
3) +

𝑑𝑢𝑗−1

𝑑𝑠
(

𝜆

𝑀𝑗−1

−
𝜆𝑚𝑗−1

2

𝑀𝑗−1
3) +

𝑑𝑢𝑗+1

𝑑𝑠
(

𝜆

𝑀𝑗

−
𝜆𝑚𝑗

2

𝑀𝑗
3) +

𝑑𝑣𝑗

𝑑𝑠
(𝑝𝑞𝑎𝑗𝐴𝑗

𝑞−1
(2𝑏𝑗) +

𝜆𝑚𝑗𝑛𝑗

𝑀𝑗
3 +

𝜆𝑚𝑗−1𝑛𝑗−1

𝑀𝑗−1
3) +

𝑑𝑣𝑗−1

𝑑𝑠
(−

𝜆𝑚𝑗−1𝑛𝑗−1

𝑀𝑗−1
3) +

𝑑𝑣𝑗+1

𝑑𝑠
(−

𝜆𝑚𝑗𝑛𝑗

𝑀𝑗
3) +

𝑑𝜆

𝑑𝑠
(−

𝑚𝑗

𝑀𝑗

+
𝑚𝑗−1

𝑀𝑗−1

)

(21)

Using various algebraic manipulations and the fact that:

1 −
𝑚𝑗

2

𝑀𝑗
2 =

𝑛𝑗
2

𝑀𝑗
2 (22)

The Equations (19) may be simplified to:

0 =
𝑑𝑢𝑗

𝑑𝑠
(𝑝𝐴𝑗

𝑞
(1 +

2𝑞𝑎𝑗
2

𝐴𝑗

) −
𝜆𝑛𝑗−1

2

𝑀𝑗−1
3) −

𝜆𝑛𝑗
2

𝑀𝑗
3

+
𝑑𝑢𝑗−1

𝑑𝑠
(
𝜆𝑛𝑗−1

2

𝑀𝑗−1
3) +

𝑑𝑢𝑗+1

𝑑𝑠
(

𝜆𝑛𝑗
2

𝑀𝑗63
)

+
𝑑𝑣𝑗

𝑑𝑠
(2𝑝𝑞𝑎𝑗𝑏𝑗𝐴𝑗

𝑞−1
+

𝜆𝑚𝑗−1𝑛𝑗−1

𝑀𝑗−1
3 +

𝜆𝑚𝑗𝑛𝑗

𝑀𝑗
3)

−
𝑑𝑣𝑗−1

𝑑𝑠
(
𝜆𝑚𝑗−1𝑛𝑗−1

𝑀𝑗−1
3) −

𝑑𝑣𝑗+1

𝑑𝑠
(
𝜆𝑚𝑗𝑛𝑗

𝑀𝑗
3)

+
𝑑𝜆

𝑑𝑠
(−

𝑚𝑗

𝑀𝑗

+
𝑚𝑗−1

𝑀𝑗−1

) , 𝑗 = 1… . 𝐽

(23)

The J equations associated with the second equation in (17) may be obtained from (23) by exchanging 𝑢𝑘 ↔

 𝑣𝑘 , 𝑎𝑘 ↔ 𝑏𝑘 , and 𝑚𝑘 ↔ 𝑛𝑘.

Finally, (18) can be expressed in terms of derivatives of {𝑢𝑗, 𝑣𝑗} as:

∑ (
𝑚𝑗

𝑀𝑗

−
𝑚𝑗−1

𝑀𝑗−1

)

𝑗=1…𝐽

𝑑𝑢𝑗

𝑑𝑠
+ (

𝑛𝑗

𝑀𝑗

−
𝑛𝑗−1

𝑀𝑗−1

)
𝑑𝑣𝑗

𝑑𝑠
= −1 (24)

The entire system of 2𝐽 + 1 equations can be represented in matrix form as:

𝐻
𝑑𝐮

𝑑𝑠
= 𝑧 ⇒

𝑑𝐮

𝑑𝑠
= 𝐻−1𝑧 (25)

Drones and Autonomous Vehicles 2024, 1, 10007 7 of 17

where 𝐻 is a (2𝐽 + 1) × (2𝐽 + 1) matrix, and 𝐮, 𝐳 are column vectors of length 2𝐽 + 1, given by the formulas:

𝐮 ≔ [�⃗⃗⃗�, �⃗⃗⃗�, 𝜆]𝑇;

𝐳: = [0,… . .0,−1]𝑇
(26)

(i.e., 𝐳 has a single nonzero entry of −1 in the last component). The matrix H can be decomposed into blocks:

𝐻 =

[

 𝐻11 𝐻12 ℎ1

⃗⃗ ⃗⃗ ⃗

𝐻21 𝐻22 ℎ2
⃗⃗ ⃗⃗ ⃗

ℎ1
𝑇⃗⃗ ⃗⃗ ⃗

ℎ2
𝑇⃗⃗ ⃗⃗ ⃗

0]

 (27)

The blocks 𝐻𝑖𝑗 can be expressed in terms of diagonal and subdiagonal matrices. First, we introduce some abbreviated

notations. Let diag(𝑐𝑗) denote the 𝐽 × 𝐽 diagonal matrix with entries 𝑐1, . . . 𝑐𝐽 on the diagonal; and let 𝐷 denote the discrete

forward derivative matrix with −1’s on the diagonal and 1’s on the first superdiagonal. Then we have:

𝐻11 = diag(𝑝𝐴𝑗
𝑞
(1 +

2𝑞𝑎𝑗
2

𝐴𝑗

)) + 𝜆 ⋅ diag (
𝑛𝑗

2

𝑀𝑗
3)𝐷 + 𝜆 ⋅ diag (

𝑛𝑗−1
2

𝑀𝑗−1
3)𝐷𝑇

𝐻12 = diag(2𝑝𝑞𝑎𝑗𝑏𝑗𝐴𝑗
𝑞−1

) − 𝜆 ⋅ diag (
𝑚𝑗𝑛𝑗

𝑀𝑗
3)𝐷 − 𝜆 ⋅ diag (

𝑚𝑗−1𝑛𝑗−1

𝑀𝑗−1

)𝐷𝑇

𝐻21 = 𝐻12

𝐻22 = diag(𝑝𝐴𝑗
𝑞
(1 +

2𝑞𝑏𝑗
2

𝐴𝑗

)) + 𝜆 ⋅ diag (
𝑚𝑗

2

𝑀𝑗
3)𝐷 + 𝜆 ⋅ diag (

𝑚𝑗−1
2

𝑀𝑗−1
3)𝐷𝑇

ℎ1
⃗⃗⃗⃗⃗ = (−

𝑚1

𝑀1
+

𝑚0

𝑀0
, … . , −

𝑚𝐽

𝑀𝐽
+

𝑚𝐽−1

𝑀𝐽−1
)

𝑇

ℎ2
⃗⃗⃗⃗⃗ = (−

𝑛1

𝑀1
+

𝑛0

𝑀0
, … . , −

𝑛𝐽

𝑀𝐽
+

𝑛𝐽−1

𝑀𝐽−1
)

𝑇

(28)

2.7. Initial Conditions for Differential Equation

In Section 2.5, we suggested that by starting with a complete tour by the drone that visits all sensors and “nudging” the

drone’s path, we can find optimal solutions for shorter and shorter path lengths. Unfortunately, the matrix H in (25) is

singular when (uj, vj) = (xj, yj), j = 1….J, which corresponds exactly to the case of a complete tour. So, we cannot use

this solution as an initial condition. Fortunately, we can address this problem by choosing a solution where the (uj, vj)

is slightly offset from (xj, yj) for all j, i.e.,

(𝑢𝑗 , 𝑣𝑗) = (𝑥𝑗 , 𝑦𝑗) + 𝜖𝑗⃗⃗ ⃗. (29)

We need to choose the {𝜖𝑗⃗⃗ ⃗} in such a way that the Lagrange multiplier conditions (7) are satisfied. We also need to

choose {𝜖𝑗⃗⃗ ⃗} such that the path joining the {(uj, vj)} is smaller than the full tour.

The gradient of f (⃗u, ⃗ v) evaluated at the point for the initial point given by (29) is given by:

𝛻𝑓(𝑢𝑗, 𝑣𝑗) = 𝑝 ((𝑥𝑗 − 𝑢𝑗)
2
+ (𝑦𝑗 − 𝑣𝑗)

2
)
⬚

[(𝑥𝑗 − 𝑢𝑗),(𝑦𝑗 − 𝑣𝑗)]

= 𝑝|𝜖𝑗⃗⃗⃗|
𝑝−2

𝜖𝑗⃗⃗⃗

= 𝑝|𝜖𝑗⃗⃗⃗|
𝑝−1

𝜖�̂�

(30)

where 𝜖�̂� is the unit vector in the direction of 𝜖 . The Lagrange multiplier condition (7) gives:

Drones and Autonomous Vehicles 2024, 1, 10007 8 of 17

𝑝|𝜖𝑗⃗⃗⃗|
𝑝−1

𝜖�̂� = 𝜆∇𝑗𝑔(�⃗⃗�, �⃗�), (31)

where

∇𝑗𝑔(�⃗⃗⃗�, �⃗⃗⃗�) ≔ (
∂𝑔

∂𝑢𝑗

,
∂𝑔

∂v𝑗

) (32)

Since 𝑔(�⃗⃗�, �⃗�) is smooth in the vicinity of (�⃗⃗�, �⃗�) ≈ (�⃗�, �⃗�), we may approximate:

∇𝑗𝑔(�⃗⃗⃗�, �⃗⃗⃗�) ≈ ∇𝑗𝑔(�⃗⃗⃗�, �⃗⃗⃗�)|�⃗⃗⃗�=�⃗⃗� , (33)

Which may be evaluated using (14) and (15). Denoting the right-hand side of (33) as 𝑔𝑗⃗⃗⃗⃗⃗ , we have from (31)

𝑝|𝜖𝑗⃗⃗⃗|
𝑝−1

𝜖�̂� = 𝜆𝑔
𝑗

⃗⃗⃗⃗

⇒ 𝜖�̂� = ±𝑔�̂� and |∈𝑗| = |
𝜆

𝑝
|
(

1

𝑝−1
)

|𝑔𝑗⃗⃗ ⃗⃗ |
(

1

𝑝−1
)

(34)

Since we are interested in solutions for which g is reduced, we choose the negative sign in (34). Then 𝜖𝑗⃗⃗ ⃗ is uniquely

determined by the values of 𝑔𝑗⃗⃗⃗⃗⃗⃗ and λ. By choosing a small value of λ, we may obtain initial values for (�⃗⃗�, 𝑣) that are very

close to (𝑥, 𝑦), so that the approximation in (33) holds a very high degree of accuracy. In this way, we obtain initial

conditions for our differential Equation (25) for which 𝐻 is not singular and can then apply standard numerical methods for

solution.

2.8. Global Optimality for Sufficiently Long Drone Ranges

In Section 2.4, we posed the local optimality condition (7) from which the vector differential Equation (25) is derived.

To show that a locally optimal solution is globally optimal, we would need to show that it improves over all other locally

optimal solutions. We may establish this for the solutions described in Sections 2.5–2.7 for drone ranges that are less than

but close to the travelling salesman tour length as follows. Here we give a brief outline of the proof; a more extended

presentation is given in Appendix B.

Every local optimal solution for a given drone path length will be part of a homotopy of solutions that may be

parametrized by path length. As path length increases in the homotopy, the energy consumption decreases until a minimum

energy consumption is reached for the entire homotopy. This minimum energy is necessarily nonnegative—and if it is 0,

then the homotopy must terminate at a tour that joins all of the cluster heads. The shortest cluster head tour (i.e., the

travelling salesman solution) will be the unique optimum in the case when the drone path length is equal to this shortest

tour. It follows that for sufficiently long drone path lengths, the solution that belongs to the homotopy that includes the

travelling salesman solution will be the unique global optimum. This justifies our claim that the solution of (5) calculated

using the homotopy approach outlined in Sections 2.5–2.7 is optimal for sufficiently long drone ranges.

The limited nature of this proof does not necessarily mean that the solution we have presented is not globally optimal

for shorter drone ranges: global optimality is notoriously difficult to establish rigorously, except in the case where the

function to be optimized has nice properties such as convexity. Nonetheless, the proof adds credibility to the expectation

that the obtained solution has a strong likelihood of being not just locally optimal but also globally optimal.

2.9. Implementation in Python

As described above, the algorithm has two phases. First, an initial ordering of cluster heads is determined, such that

the length of a tour joining the cluster heads in this order is minimized among all possible orderings. Once the ordering is set,

the homotopy of solutions is computed using the initial conditions and system of differential equations described in Sections

2.7 and 2.5. The final path with the desired path length is selected from the homotopy.

For the first phase, the shortest tour joining cluster heads is found using the travelling salesman algorithm as

implemented in the python-tsp package. This gives a set of ordered cluster head points, that is, (xj,yj) re-arranged

appropriately.

For the second phase, the homotopy solution is computed according to the following steps:

Drones and Autonomous Vehicles 2024, 1, 10007 9 of 17

Step 0: Initialize cluster head locations, initial value of λ, and step size h (typically on the order of 0.1),

Step 1: Find a minimal initial path joining the cluster head points using a travelling salesman algorithm.

Step 2: Determine the initial points of the closest approach to be a small distance away from the cluster head points,

according to the algorithm described in Section 2.7.

Step 3: Solve the homotopy Equations (25) numerically. Initially, we used the odeint solver from the scipy package

but encountered instabilities when the path vertices began to merge. We succeeded better using a Runge Kutta-

4 code obtained from the web and modified for our purpose.

Appendix A gives a more detailed description of the code as well as a link to a Github page where the code can be

downloaded.

2.10. Specification of Test Cases

The Python implementation of the algorithm was tested by simulating a number of different cluster head

configurations, with various numbers of cluster heads and drone starting positions. The test configurations used have the

following cluster head position:

Case 1: [(2, 1), (2, 4), (6, 4), (6, 1)]

Case 2: [(2, 1), (2, 4), (8, 2), (6, 4), (6, 1)]

Case 3: [(2, 1), (2, 4), (8, 2), (6, 4), (6, 1)]

Case 4: [(2, 1), (2, 4), (8, 2), (6, 4), (6, 1), (7, 3.5), (1, 2.5)]

Case 5: [(2,1), (2, 4), (8, 2), (6, 4), (6, 1), (7, 3.5), (1, 2.5), (3,6)]

Case 6: [(2,1), (2, 4), (8, 2), (6, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5)]

Case 7: [(0.5,1), (2, 4), (8, 2), (9, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5),(7.5,6), (4,8.5), (5.5,10)]

Case 8: [(0.5,1), (2, 4), (8, 2), (9, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5),(7.5,6), (4,8.5), (5.5,10), (3.5,12)]

Case 9: [(0.5,1), (2, 4), (8, 2), (9, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5),(7.5,6), (4,8.5), (5.5,10), (3.5,12),

(2.25,10)]

Case 10: [(0.5,1), (2, 4), (8, 2), (9, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5),(7.5,6), (4,8.5), (5.5,10), (3.5,12),

(2.25,10), (6.25,16)]

Case 11: [(0.5,1), (2, 4), (8, 2), (9, 4), (6.5, 1.5), (7, 3.5), (1, 2.5), (3,6), (3,1), (5,0.5),(7.5,6), (4,8.5), (5.5,10), (3.5,12),

(2.25,10), (6.25,16), (7,11)]

These configurations were chosen manually so as to have homotopy solutions that are easily visible as well as to be

sufficiently similar so that trends in the homotopy as the number of points increases are also visible. All cases used a

transmission power loss exponent of 2, with the finishing position of drone equal to (0,0). The drone path starting point is

(0,0), except for Case 3 in which the starting point is (3,1). For each configuration, the travelling salesman tour was

computed, as well as the homotopy of solutions obtained when the drone path length L is decreased from the travelling

salesman tour length down to the minimum path joining the tour starting and ending point. A step size of 0.1 was used for

the numerical solution for all cases.

3. Results

Figures 2–4 display results from simulations of the test cases described in Section 2.10 using the Python code described

in Appendix A.

Figure 2 contains a 6 × 2 grid of plots that shows results from the test scenarios listed above. Each plot shows solutions

in the homotopy corresponding to different drone path lengths. The longest path in each homotopy is the travelling-

salesman path that joins the cluster heads; while the shortest is the straight-line path that joins starting and ending points.

The algorithm computes the vertices from longest path to shortest, according to the ODE in equation (25) with

initial conditions (�⃗⃗�, �⃗�) = (�⃗�, �⃗�), where the (𝑥𝑗, 𝑦𝑗) are in travelling salesman order. Initially, the paths roughly

preserve the original shape as they shrink (in fact, it can be shown that as the path shrinks, the path vertices always move

in the direction of the angle bisectors of the path polygon.) After several iterations, path vertices merge: for example, the

first figure in the first row starts with a path containing 5 segments, which eventually becomes 4 and then 3 segments as the

path length shrinks. Similar changes occur in the other figures.

Drones and Autonomous Vehicles 2024, 1, 10007 10 of 17

The left-hand graph in Figure 3 plots the difference between the travelling salesman tour length and the length of the

drone’s path (which for simplicity, we denote as the “path defect”) as a function of the iteration number in the ODE solution,

for each of the test cases. The initial path length is equal to the tour length; hence, all graphs start from (0,0). The path

defect increases more rapidly for scenarios with more cluster heads and longer travelling salesman tour lengths. For all

scenarios, the rate of increase of path defect slows as the number of iterations increases. Eventually, the curves become flat

when the homotopy reaches the minimum path that joins (𝑢0, 𝑣0) and (𝑢𝐽+1, 𝑣𝐽+1).

The right-hand graph in Figure 3 shows the WSN’s energy expenditure as a function of step number. As expected, this

increases with iteration number as the path length decreases.

There are noticeable bends in both graphs, which occur at the same iteration number. For example, in the curves for test-

7, test-8 and test-9 there are concurrent bends in both the defect curve and the total energy curve, which occur near iteration

numbers 75, 125, and 150, respectively. In the homotopy, the bend indicates the merger of two path vertices so that two cluster

heads both correspond to a single vertex. This shows that vertex mergers slow down the algorithm’s progress.

The tradeoff between drone path length and energy expenditure is more clearly shown in Figure 4, which plots the 𝑝’th

root of cluster head energy consumption on the vertical axis versus cluster head tour length minus drone path length on the

horizontal axis. In our simulations 𝑝 = 2, so the 𝑝’th root of energy is the ℓ2 norm of the vector [|𝑧1 – �⃗⃗⃗�1|, . . . , |𝑧𝐽 – �⃗⃗⃗�𝐽 |]

consisting of distances between cluster heads and corresponding drone path vertices. In the case where all distances

|𝑧𝑗 – �⃗⃗⃗�𝑗| are approximately equal, then the ℓ2 norm is nearly proportional to the mean distance between the cluster head and

the corresponding drone vertex. The linear section of the graphs in Figure 4 indicates an initial linear dependence of the

distance between cluster heads and drone vertices as the path defect increases. However, as the path defect increases

(corresponding to a decrease in drone range), the dependence of total energy on path length becomes noticeably convex.

Unlike the energy versus iteration and path defect versus iteration curves in Figure 3, there are no bends in these curves.

This indicates that the bends reflect convergence issues for the numerical solution for the homotopy rather than a change in

the trends in energy over the homotopy as the drone range is varied.

Figure 5 represents different runtime characteristics associated with the numerical solution of Equation (15) for

different numbers of cluster heads and different drone ranges. The three panels in Figure 5 represent the total runtime,

number of Runge-Kutta iterations, and runtime per iteration for the 12 scenarios shown in Figure 2 for four different drone

ranges, plotted as a function of the number of vertices in the solution path. For each of the 12 scenarios, we chose four

evenly-spaced drone ranges of 0.2, 0.4, 0.6, and 0.8 times the minimum range required to reduce the objective function

𝑓(�⃗⃗�, �⃗�) to 0, which is equal to the length of the travelling salesman path joining the points {(𝑥𝑗, 𝑦𝑗)}. The graphs show

gradual increases in runtime as the number of cluster heads increases. The runtime per iteration does increase for more

cluster heads (as expected, since more variables must be solved for), but this increase is offset by a concurrent general

decrease in the number of iterations required for each drone range.

Although the full algorithm requires the initial solution of a travelling salesman problem in addition to the solution of

(15), we do not include the runtimes for the travelling salesman problem in Figure 5. It is well known that an exact solution

depends exponentially on the number of vertices. However, there are many algorithms with lower complexity (including

both stochastic and heuristic algorithms) that can be used to obtain near-optimal tours.

Drones and Autonomous Vehicles 2024, 1, 10007 11 of 17

Figure 2. Drone path homotopy solutions for 1 different test scenarios. The cluster head positions are indicated by X’s. The different

colored lines are drone path solutions for different values of maximum drone range, with the drone start and end points as indicated.

Drones and Autonomous Vehicles 2024, 1, 10007 12 of 17

Figure 3. (a) Path defect (defined as the length of a tour of the cluster heads minus the length of the drone path) plotted as a function of

number of iterations in the numerical solution of the matrix differential Equation (25). (b) Total energy expended by sensors for a single

tour, as a function of iteration number. Both graphs show results for 2000 iterations for the 12 test scenarios shown in Figure 2.

Figure 4. (total energy)1/P plotted as a function of path defect (defined as the TSP tour length minus the drone path length) for the 12

scenarios shown in Figure 2.

Drones and Autonomous Vehicles 2024, 1, 10007 13 of 17

Figure 5. (a) Run times for the Runge-Kutta ODE for the 12 scenarios shown in Figure 2, plotted as a function of the number of cluster

heads (equal to the number of path vertices), for different drone ranges. The drone range for each scenario is specified as a fraction of the

length of the travelling salesman path joining the cluster heads. The four curves correspond to drone ranges equal to 20%, 40%, 60%, and

80% of the travelling salesman path (longer drone ranges take less time to compute). (b) Number of iterations (with step size ℎ = 0.1)

required for the Runge-Kutta algorithm to compute solutions with the specified drone ranges. (c) Execution time per iteration for the same

set of solutions as the other two graphs. All simulations were performed using Google Colab.

4. Conclusions

The solution described above for finding optimal drone information-harvesting paths is locally and globally optimal for

sufficiently long drone ranges. The numerical solution algorithm executes quickly enough that it can be implemented in real-

time, and execution time grows slowly with the size of the system. The solution can be used either to optimize total transmit

power consumption and maximum power consumption by cluster heads. However, there are limitations in that the speed of

execution slows considerably when the drone range decreases below a certain point (i.e., when path vertices begin to merge),

and global optimality for comparatively short drone ranges is uncertain.

5. Future Work

The following future work is proposed in order to improve upon this research.

• The proposed algorithm supposes that the cluster head positions are predetermined. Alternatively, it is possible to use

the algorithm as a component in a more comprehensive algorithm that does co-optimization of cluster head positions

and drone path in systems where alternative cluster heads are a possibility.

• Equation (5) does not take into account various environmental factors such as obstacles or wind speed. It is also not

robust to possible sensor node failures. The equation would need to be elaborated to include terms that reflect these

factors. Also, the equations are limited to optimization criteria 𝑂1 and 𝑂2. Different optimization criteria can be

accommodated by modifying the Equation (1) for the function 𝑓(�⃗⃗�, �⃗�), which then requires recalculation of the partial

derivatives
𝜕𝑓

𝜕𝑢𝑗
 and

𝜕𝑓

𝜕𝑣𝑗
 which appear in Equations (9) and following.

• The numerical homotopy solution code has not been fully optimized to decrease execution times. In particular, existing

solver packages and/or variable step-size solution algorithms may be explored. In addition, we have remarked that the

algorithms slow down after drone path vertex mergers. Future work may explore ways to avoid this slowdown. One

possibility is to modify the algorithm so that when path vertices merge, the two associated cluster heads may be

replaced by a single virtual cluster head that produces the same power loss. Then, the homotopy solution can be

continued with vectors ⃗ u, ⃗ v that each have one less component.

• The algorithm can be modified to accommodate moving cluster heads, by expressing �⃗�, �⃗�, �⃗⃗�, and �⃗� as functions of

time 𝑡, and then inverting the time dependence of �⃗⃗� and �⃗� to obtain �⃗� and �⃗� as functions of �⃗⃗� and �⃗�. Then the same

Drones and Autonomous Vehicles 2024, 1, 10007 14 of 17

homotopy approach can be used with modified equations for the derivatives of {𝑎𝑗}𝑗=1…𝐽
 and {𝑏}𝑗=1…𝐽 in (13) and

following.

• Further explorations of the question of global optimality may be pursued. As the proof in Appendix B shows, any

globally optimal solution must be part of a homotopy that includes some ordering of the cluster head points. It follows

that in some cases, better solutions may be found by computing homotopies for different orderings of the cluster heads.

Appendix A. Python Implementation

Appendix A.1. Link to Code

The Python code used to generate the figures shown in Section 3 is available at: https://github.com/ganap-ram/drone.

Appendix A.2. Implemented Equations

This section describes the differential equations used to solve as implemented in the Python code. Although the

implementation is mathematically equivalent to the description in Section 2.5, the notation used is somewhat different. For

notational and coding simplicity, we define some intermediate variables:

𝑢𝑗, 𝑣𝑗 = 𝑗𝑡ℎturning point of drone j = 1 … J

𝑎𝑗 = 𝑢𝑗 − 𝑥𝑗

𝑏𝑗 = 𝑣𝑗 − 𝑦𝑗

𝐴𝑗 = 𝑎𝑗
2 + 𝑏𝑗

2

𝑚𝑗 = 𝑢𝑗 − 𝑢𝑗+1

𝑛𝑗 = 𝑣𝑗 − 𝑣𝑗+1

𝑀𝑗 = 𝑚𝑗
2 + 𝑛𝑗

2

𝐻𝑗 = 𝑀𝑗
3/2

𝑞 =
𝑝

2
− 1

𝑟 = 1/2

The following are the various coefficient values of the derivatives in the matrix:

𝑆𝑗1 = 𝜆
𝑀𝑗−1 − 𝑚𝑗−1

2

𝐻𝑗−1

𝑆𝑗2 = −𝜆
𝑚𝑗−1𝑛𝑗−1

𝐻𝑗−1

𝑆𝑗3 = 2𝑝𝑞𝑎𝑗
2𝐴

𝑗

𝑞−1
+ 𝑝𝐴𝑗

𝑞−1
− 𝜆

𝐻𝑗(𝑀𝑗−1 − 𝑚𝑗−1
2) + 𝐻𝑗−1(𝑀𝑗 − 𝑚𝑗

2)

𝐻𝑗−1𝐻𝑗

𝑆𝑗4 = 2𝑝𝑞𝑎𝑗𝑏𝑗𝐴𝑗

𝑞−1 + 𝜆
𝑚𝑗−1𝑛𝑗−1𝐻𝑗 + 𝑚𝑗𝑛𝑗𝐻𝑗−1

𝐻𝑗−1𝐻𝑗

𝑆𝑗5 = 𝜆
𝑀𝑗 − 𝑚𝑗

2

𝐻𝑗

𝑆𝑗6 = −𝜆
𝑚𝑗𝑛𝑗

𝐻𝑗

Drones and Autonomous Vehicles 2024, 1, 10007 15 of 17

𝑤𝑗 =
−𝑚𝑗−1√𝑀𝑗 + 𝑚𝑗√𝑀𝑗−1

√𝑀𝑗−1𝑀𝑗

𝑡𝑗1 = −𝜆
𝑚𝑗−1𝑛𝑗−1

𝐻𝑗−1

𝑡𝑗2 = 𝜆
𝑀𝑗−1 − 𝑛𝑗−1

2

𝐻𝑗−1

𝑡𝑗3 = 2𝑝𝑞𝑎𝑗𝑏𝑗𝐴𝑗

𝑞−1 + 𝜆
𝑚𝑗−1𝑛𝑗−1𝐻𝑗 + 𝑚𝑗𝑛𝑗𝐻𝑗−1

𝐻𝑗−1𝐻𝑗

𝑡𝑗4 = 2𝑝𝑞𝑏𝑗
2𝐴

𝑗

𝑞−1
+ 𝑝𝐴𝑗

𝑞
− 𝜆

𝐻𝑗(𝑀𝑗−1 − 𝑛𝑗−1
2) + 𝐻𝑗−1(𝑀𝑗 − 𝑛𝑗

2)

𝐻𝑗−1𝐻𝑗

𝑡𝑗5 = −𝜆
𝑚𝑗𝑛𝑗

𝐻𝑗

𝑡𝑗6 = 𝜆
𝑀𝑗 − 𝑛𝑗

2

𝐻𝑗

𝑧𝑗 =
−𝑛𝑗−1√𝑀𝑗 + 𝑛𝑗√𝑀𝑗−1

√𝑀𝑗−1𝑀𝑗

And the differential equations have the form (j = 1 . . . J):

𝑠𝑗1
𝑑𝑢𝑗−1

𝑑𝑠
+ 𝑠𝑗2

𝑑𝑣𝑗−1

𝑑𝑠
+ 𝑠𝑗3

𝑑𝑢𝑗

𝑑𝑠
+ 𝑠𝑗4

𝑑𝑣𝑗

𝑑𝑠
+ 𝑠𝑗5

𝑑𝑢𝑗+1

𝑑𝑠
+ 𝑠𝑗6

𝑑𝑣𝑗+1

𝑑𝑠
− 𝑐1

𝑑𝜆

𝑑𝑠
= 0

𝑡𝑗1
𝑑𝑢𝑗−1

𝑑𝑠
+ 𝑡𝑗2

𝑑𝑣𝑗−1

𝑑𝑠
+ 𝑡𝑗3

𝑑𝑢𝑗

𝑑𝑠
+ 𝑡𝑗4

𝑑𝑣𝑗

𝑑𝑠
+ 𝑡𝑗5

𝑑𝑢𝑗+1

𝑑𝑠
+ 𝑡𝑗6

𝑑𝑣𝑗+1

𝑑𝑠
− 𝑐2

𝑑𝜆

𝑑𝑠
= 0

𝑑𝑔

𝑑𝑠
= −1 ⇒ ∑(

𝜕𝑔

𝜕𝑢𝑗

𝑑𝑢𝑗

𝑑𝑠
+

𝜕𝑔

𝜕𝑢𝑗

𝑑𝑣𝑗

𝑑𝑠
) = −1

𝐽

𝑗=1

This is represented in the matrix notation as:

𝐾𝐷 = 𝐶

where:

Drones and Autonomous Vehicles 2024, 1, 10007 16 of 17

Appendix B. Mathematical Proof of Global Optimality

In this appendix, we give a more extended presentation of the argument outlined in Section 2.8, which asserts that the

homotopy solution found in Sections 2.5–2.7 is a globally optimal solution of (5) for drone ranges that are less than but

close to the travelling salesman tour length. A completely rigorous mathematical argument would be tedious to present, but

a step-by-step outline is as follows.

Suppose first we restrict to drone path solutions such that (𝒖𝒋, 𝒗𝒋) is in the same order of (𝒙𝒋, 𝒚𝒋), 𝒋 = 𝟏,… 𝑱 where

(𝒙𝒋, 𝒚𝒋) is the travelling salesman order of cluster heads. Suppose also that (�⃗⃗⃗�(𝒕𝒔)(𝑳), �⃗⃗⃗�(𝒕𝒔)(𝑳)) is a globally optimal

solution for the drone path satisfying the constraint 𝒈(�⃗⃗⃗�(𝒕𝒔)(𝑳), �⃗⃗⃗�(𝒕𝒔)(𝑳)) = 𝑳. Any globally optimal solution of (5) is also

locally optimal: so (�⃗⃗⃗�(𝒕𝒔)(𝑳), �⃗⃗⃗�(𝒕𝒔)(𝑳)) is also locally optimal. Then (�⃗⃗⃗�(𝒕𝒔)(𝑳), �⃗⃗⃗�(𝒕𝒔)(𝑳)) is part of a homotopy of solutions

using the same construction we showed in Sections 2.5–2.7. The homotopy consists of locally optimal solutions

(�⃗⃗⃗�(𝒕𝒔)(𝒔), �⃗⃗⃗�(𝒕𝒔)(𝒔)) satisfying 𝒈(�⃗⃗⃗�(𝒕𝒔)(𝒔), �⃗⃗⃗�(𝒕𝒔)(𝒔)) = 𝒔, where 𝒔 can take values in a closed interval containing 𝑳. Define

the function 𝒇(𝒕𝒔)(𝒔) = 𝒇(�⃗⃗⃗�(𝒕𝒔)(𝒔), �⃗⃗⃗�(𝒕𝒔)(𝒔)). The function 𝒇(𝒕𝒔) decreases strictly as 𝒔 increases, because if the drone path

is lengthened, it is always possible to move closer to the cluster heads; and as long as 𝒇(𝒕𝒔)(𝒔) is positive, it is always

possible to decrease 𝒇𝑰 by increasing the path length. It follows that the minimum value of 𝒇(𝒕𝒔)(𝒔) on the homotopy cannot

be positive, so (�⃗⃗⃗�(𝒕𝒔)(𝑳), �⃗⃗⃗�(𝒕𝒔)(𝑳)) must be connected by a homotopy to (�⃗⃗⃗�, �⃗⃗⃗�) where the components of �⃗⃗⃗� and �⃗⃗⃗� are in

travelling salesman order. So the solution in this homotopy whose length is equal to the travelling salesman tour length of

cluster heads (denoted by 𝑳(𝒕𝒔)) corresponds to a value of 𝒇(𝒕𝒔)(𝑳
(𝒕𝒔)) = 𝟎.

Now, we consider solutions where (𝒖𝒋, 𝒗𝒋) receives the information from (𝒙𝝈(𝒋), 𝒚𝝈(𝒋)) where 𝝈 is a permutation of

(𝟏,… 𝑱). By similar arguments as in the previous paragraph, any locally optimal solution corresponding to a path length 𝑳

is part of a homotopy (�⃗⃗⃗�(𝝈)(𝒔), �⃗⃗⃗�(𝝈)(𝒔)) with associated strictly decreasing function 𝒇𝝈(𝒔) ≔ 𝒇(�⃗⃗⃗�𝝈(𝒔), �⃗⃗⃗�𝝈(𝒔)) , which

includes a solution (�⃗⃗⃗�(𝝈)(𝑳(𝝈)), �⃗⃗⃗�(𝝈)(𝑳(𝝈))) for path length 𝑳(𝝈) > 𝑳 such that 𝒇𝝈(𝑳
(𝝈)) = 𝟎. But this implies that

(�⃗⃗⃗�(𝝈)(𝑳(𝝈))
𝒋
, �⃗⃗⃗�(𝝈)(𝑳(𝝈))

𝒋
) = (𝒙𝝈(𝒋), 𝒚𝝈(𝒋)), 𝒋 = 𝟏,… 𝑱, which in turn implies that 𝑳(𝝈) is the length of the tour of the points

{(𝒙𝒋, 𝒚𝒋)}𝒋=𝟏…𝑱
 in the order given by 𝝈. This means that 𝑳(𝝈) ≥ 𝑳(𝒕𝒔), and 𝑳(𝝈) = 𝑳(𝒕𝒔) if and only if 𝝈 gives a travelling

salesman ordering of the nodes in (�⃗⃗⃗�, �⃗⃗⃗�). Since the function 𝒇𝝈(𝒔) is strictly decreasing, it follows that 𝒇𝝈(𝑳
(𝒕𝒔)) >

𝒇𝒐𝒑𝒕(𝑳
(𝒕𝒔)) for all permutations 𝝈 for which (𝒙𝝈(𝒋), 𝒚𝝈(𝒋)) is not a travelling salesman permutation. Let �̃� ≔ 𝐦𝐢𝐧

𝝈≠𝑰
𝒇𝝈, where

the minimum is taken over all non-travelling salesman permutations. Then we also have �̃�(𝑳(𝒕𝒔)) > 𝒇(𝒕𝒔)(𝑳
(𝒕𝒔)). It follows

by continuity that there is an �̃� with 𝟎 < �̃� < 𝑳(𝒕𝒔) such that �̃�(𝒔) > 𝒇(𝒕𝒔)(𝒔) for �̃� ≤ 𝒔 ≤ 𝑳. In other words, the solution

(�⃗⃗⃗�(𝑰)(𝒔), �⃗⃗⃗�(𝑰)(𝒔)) is a local optimum such that 𝒇 (�⃗⃗⃗�(𝑰)(𝒔), �⃗⃗⃗�(𝑰)(𝒔)) is less than the value of 𝒇 for any other local optimum.

It follows that (�⃗⃗⃗�(𝒕𝒔)(𝒔), �⃗⃗⃗�(𝒕𝒔)(𝒔)) is a global optimum for �̃� < 𝒔 ≤ 𝑳(𝒕𝒔).

Note that this proof does not give a practical, constructive method for finding �̃�: it only shows that it exists. However,

the proof does indicate that any global optimum will be part of some homotopy that includes the points {(𝒙𝒋, 𝒚𝒋)}, 𝒋 = 𝟏…𝑱

in some order. This fact indicates that other candidate global optimal solutions can be found by creating homotopies starting

from other (non-travelling salesman) tours of the cluster heads points.

Acknowledgments

The authors wish to thank Dr. Aristide Tsemo for his thorough review of the equations in Section 2.6, which resulted

in several corrections. We also wish to thank the reviewers of this paper, who made several valuable suggestions for

improvements.

Author Contributions

Conceptualization, R.G. and C.T.; Methodology, R.G. and C.T.; Software, R.G.; Validation, R.G. and C.T.; Formal

Analysis, R.G. and C.T.; Investigation, R.G. and C.T.; Writing—Original Draft Preparation, R.G. and C.T.; Writing—

Review & Editing, R.G. and C.T.; Visualization, R.G. and C.T.; Supervision, C.T.

Drones and Autonomous Vehicles 2024, 1, 10007 17 of 17

Ethics Statement

Not applicable.

Informed Consent Statement

Not applicable.

Funding

This research received no external funding.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References

1. Nguyen MT, Nguyen CV, Do HT, Hua HT, Tran TA, Nguyen AD, et al. UAV-assisted data collection in wireless sensor networks:

A comprehensive survey. Electronics 2021, 10, 2603.

2. Wei Z, Zhu M, Zhang N, Wang L, Zou Y, Meng Z, et al. UAV-assisted data collection for internet of things: A survey. IEEE Int.

Things J. 2022, 9, 15460–15483.

3. Memos VA, Psannis KE. UAV-based smart surveillance system over a wireless sensor network. IEEE Commun. Stand. Mag. 2021,

5, 68–73.

4. Qadir Z, Zafar MH, Moosavi SKR, Le KN, Tam VW. Optimizing UAV path for disaster management in smart cities using

metaheuristic algorithms. In Computational Intelligence for Unmanned Aerial Vehicles Communication Networks; Springer

International Publishing: Cham, Switzerland, 2022; pp. 225–244.

5. Qadir Z, Zafar MH, Moosavi SKR, Le KN, Mahmud MP. Autonomous UAV path-planning optimization using metaheuristic

approach for predisaster assessment. IEEE Int. Things J. 2021, 9, 12505–12514.

6. Dac-Tu H, Esten IG, Tor AJ. Heuristic algorithm and cooperative relay for energy efficient data collection with a UAV and WSN.

In Proceedings of the 2013 International Conference on Computing, Management and Telecommunications (ComManTel), Ho

Chi Minh City, Vietnam, 21–24 January 2013, pp. 346–351.

7. Liu S, Wei Z, Guo Z, Yuan X, Feng Z, Performance analysis of UAVs assisted data collection in wireless sensor network. In

Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018, pp. 1–5.

8. Gong J, Chang TH, Shen C, Chen X. Flight time minimization of UAV for data collection over wireless sensor networks. IEEE J.

Sel. Areas Commun. 2018, 36, 1942–1954.

9. Skiadopoulos K, Giannakis K, Tsipis A, Oikonomou K. Impact of drone route geometry on information collection in wireless

sensor networks. Ad. Hoc. Netw. 2020, 106, 102220.

10. Ho DT, Grøtli EI, Sujit PB, Johansen TA, De Sousa JB. Performance evaluation of cooperative relay and Particle Swarm

Optimization path planning for UAV and wireless sensor network. In Proceedings of the 2013 IEEE Globecom Workshops (GC

Wkshps), Atlanta, GA, USA, 9–13 December 2013, pp. 1403–1408.

11. Zhu M, Wei Z, Qiu C, Jiang W, Wu H, Feng Z. Joint data collection and sensor positioning in multi-UAV-assisted wireless sensor

network. IEEE Sens. J. 2023, 23, 23664–23675.

