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ABSTRACT: Reversible protonic solid oxide cell (P-SOC) operating at intermediate-temperature exhibits excellent potential as a 

power generation and green hydrogen production device in fuel cell and electrolysis cell modes because of the high conversion 

efficiency. However, the lack of efficient air electrodes is the main challenge to obtain P-SOC with remarkable performance. 

Typically, air electrodes should possess high proton, oxygen ion and electron conductivity, outstanding catalytic ability for oxygen 

reduction reaction and H2O splitting, and also long-term durability. Recently, high entropy oxides (HEO) have become popular due 

to their various potential applications in terms of outstanding properties, including catalysis ability, conductivity, thermal stability, 

etc. HEO air electrodes have been confirmed to show good electrochemical performance in P-SOC, but the complex compositions and 

structure make it difficult to study HEO by traditional experimental methods. Machine learning (ML) has been regarded as a powerful 

tool in materials research and can solve the drawbacks in the discovery of HEO in a traditional way. In this perspective, we not only 

discuss the current utilization of HEO in P-SOC but also provide a possible process to use ML to guide the development of HEO. 

Keywords: High entropy oxide; Air electrode; Proton conduction; Protonic solid oxide cell; Machine learning 
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Sustainable development depends on low-carbon fossil energy, the scale of zero-carbon energy, and the accelerated 

integration of multiple energy sources. Hydrogen energy has been considered as a promising energy carrier due to the 

advantages of clean, low volumetric energy density and high gravimetric density [1]. So, Efficient technologies of green 

hydrogen production and utilization are pursued to accelerate the innovation of energy. The combination of intermittent 

renewable energies and H2O electrolysis strategies is one of the most important methods to achieve the supply of green 

hydrogen. Several types of electrolysis cells are studied in different operating temperatures based on the employed ionic 

conductors, such as alkaline water electrolysis cell (AWE) at < 100 ℃, proton exchange membrane electrolysis cell 

(PEMEC) at 80–150 ℃, protonic solid oxide electrolysis cell (P-SOEC) at 450–700 ℃ and oxide-ion solid oxide 

electrolysis cell (O-SOEC) at >700 ℃ [2–5]. Hydrogen generation in full-temperature can be realized via 

collaboratively working of the above cells. However, P-SOEC is still not as mature as other types of cells, even though 

it offers the advantages of not requiring noble catalysts and having high efficiency. At the same time, the reversible 

process of P-SOEC can be directly used as a fuel cell mode (P-SOFC) to achieve hydrogen-induced power generation. 

A typical protonic solid oxide cell (P-SOC) structure consists of a dense proton conducting electrolyte thin film of about 

several to dozen microns, a porous air electrode, and a porous fuel electrode of composite with nickel and electrolyte. 

Among these components, BaZr1–x–yCexMyO3–δ (BZCM, M = Y, Yb, etc.) is usually used as electrolyte materials [6,7]. 

Therefore, One of the main challenges for P-SOC is the lack of materials with high catalytic ability for air electrode 

reactions and excellent tolerance to high H2O partial pressure, resulting in low utilization and poor stability of air electrodes 

[8,9]. Thus, most advances in P-SOC focused on air electrodes, and it’s urgent to rationally design electro-catalytically 

active and robust air electrodes of P-SOC for hydrogen production and power generation at intermediate temperatures. 

At an early stage, some O2–/e– conducting oxide from high-temperature oxide-ion solid oxide cells (O-SOC) are 

applied as air electrode materials for P-SOC, such as Sm0.5Sr0.5CoO3–δ (SSC), (LaSr)CoO3–δ (LSC), 
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La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) [10–13]. However, the air electrode reaction is limited to gas-air electrode-electrolyte 

triple phase boundary (TPB) because these oxides don’t possess proton conductivity. To match the proton conductivity 

of the BZCM electrolyte, H+/O2–/e– single phase conducting oxides are proposed to extend the reaction area to the whole 

surface of the air electrode particle. Over the past twenty years, many advances have been made to increase the hydration 

ability (H+ conduction), active reaction sites, electrocatalytic ability, and the thermal compatibility between air electrode 

and electrolyte, such as some excellent H+/O2–/e– conducting materials: (Pr, La, Sr)(Co, Fe, Mn, Ni)O3, Ba(Fe, Zr, Zn)O3, 

and (Pr)(Ba, Sr)(Co, Fe)O6 [14–16]. These oxides have significantly increased both power density and current density 

in fuel cell and electrolysis mode. However, such oxides with Sr, Ba, and Pr elements are easy to segregate and 

agglomerate under high steam concentration, which will change the structure and composition of the oxide surface and 

affect the durability, active sites, and catalytic ability of the air electrode. 

Recently, a novel class of air electrode material, high entropy oxides (HEO), has attracted significant attention due 

to the distribution of various cations in HEO, which could contribute to a broad range of high electrocatalytic 

performances. Entropy represents the degree of disorder in a material, which was first introduced by T. Clausius in 

1854. Benefit from the research of high entropy alloys (HEA) in recent years, the HEO containing five or more elements 

with equal or nearly equal atomic fractions are also studied in terms of excellent electrical conductivity, thermal 

conductivity, magnetic properties, catalytic properties, etc [17,18]. HEO with a high configuration entropy would 

lead to a decreased Gibbs free energy, thus enhancing the stability of oxides, which is required by the air electrode 

of P-SOC. In addition to the thermal stability, the multi-elements can also accelerate the formation of oxygen defects, 

offering catalytic activity for air electrode reactions. Figure 1 shows the publications and citations for HEO and the 

application of HEO in P-SOC from 2013 to 2023. It is apparent that the studies on HEO were relatively few before 

2015, indicating that HEO did not receive much attention.In 2015, Rost et al. highlighted entropy-stabilized oxides, 

which showed a random and homogeneous distribution of cations [18]. After this, the SCI papers about HEO increased 

greatly and had a number of 1329 in 2023, suggesting that HEO was getting more and more attention. However, among 

them, the SCI papers with a topic of P-SOC is only 9, indicating that the utilization of HEO as an air electrode or 

electrolyte for P-SOC is still in the very initial stage. In addition, the impact of configuration entropy on the protonic 

conductivity, electrochemical performance, structural durability, etc., is still unclear, and more effort needs to be done 

to accelerate the development of HEO in P-SOC. 

 

Figure 1. The number of (a) published SCI papers and (b) corresponding citations related to HEO and P-SOC with HEO from 2013 

to 2023 (data come from Web of Science). 

The crystal structures of HEO are closely related to their properties. The main crystal structures of HEO include 

rock-salt, fluorite, perovskite, spinel, and pyrochlore. After exploration for several years, the relationships between the 

composition, crystal structure, preparation methods, and properties have been established preliminarily. Several review 

papers have thoroughly discussed HEOs for O-SOC applications, covering synthesis methods, electrical and thermal 

properties, and electrochemical performance [19–22]. Most commonly used synthesis methods of HEOs in O-SOC are 

solid-state reaction and sol-gel method, as summarized by Wang et al. [21]. For example, homogeneous single solid-

solution phases, Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3, Sr(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, and 

(Sr0.5Ba0.5)(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 were successfully fabricated at 1500 ℃ by solid-state reactions [23]. La1–xSrx(Co, 

Cr, Fe, Mn, Ni)O3–δ (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) perovskite-type oxides were successfully prepared at 700 ℃ by sol-gel 
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method [24]. The impedance spectroscopy measurement identified that a total polarization resistance of 0.126 Ω cm–2 at 900 ℃ 

was achieved for La0.7Sr0.3(Co, Cr, Fe, Mn, Ni)O3–δ air electrode, leading to a power density of 550 mW cm–2. 

When HEO is used for P-SOC, HEO-type air electrodes are usually derived from ABO3 perovskites, as shown in 

Figure 2a. The A-site is randomly and homogenously occupied by different cations. Most HEO air electrodes are also 

synthesized via the sol-gel method. For example, by this way, Pr0.2Ba0.2Sr0.2La0.2Ca0.2CoO3–δ (PBSLCC) was designed 

by using typical cations (Pr2+/Pr3+, Ba2+, Sr2+, La3+, Ca2+) on A site, which demonstrated similar valence and ionic 

properties. When used as an air electrode of P-SOC, PBLCC exhibited outstanding activity for oxygen reduction and 

H2O splitting reactions with a low polarization resistance of 0.26 Ω cm2 at 600 ℃ of BZCM-supported symmetrical 

cell, contributing peak power density of 1.16 W cm–2 in fuel cell mode and current density of 1.75 A cm–2 at 1.3 V in 

electrolysis mode at 600 ℃. Specially, the cell maintained a promising durability of 543 h at 1.0 A cm–2 at 600 ℃ even 

in the air with a higher concentration of steam (30%), which didn’t show apparent segregations of nanoparticles or air 

electrode delamination, implying the high stability of PBSLCC [25]. Similar, Nd was added based on PBSLCC and 

formed Pr1/6Ba1/6Sr1/6La1/6Ca1/6Nd1/6CoO3–δ (PBSLCNC), which achieved higher peak power density and current density 

of 1.21 W cm–2 and 1.95 A cm–2 under the same conditions, and also the cell kept stable operation without obvious 

decay after 200 h test under different steam pressure conditions [26]. In the case of the B site, 

BaCo0.2Fe0.2Zr0.2Sn0.2Pr0.2O3–δ (BCFZSP) was prepared and employed as an air electrode from the famous oxide 

BaCo0.4Fe0.4Zr0.1Y0.1O3–δ (BCFZY). BCFZSP shows integrated H+/O2–/e– conduction and yields peak power density and 

current density of 0.68 W cm–2 and 0.92 A cm–2 (1.3 V) at 600 ℃ [27]. Although papers studying HEO as an air 

electrode are rare, the reported electrochemical performances are superior to most O2–/e– and H+/O2–/e– conducting 

oxides with low or medium entropy, as summarized in Figure 2b. These results indicate that HEO provides a new 

strategy for designing air electrodes with outstanding catalytic activity and thermal stability for revisable P-SOC. In 

addition to air electrodes, HEO was also used as electrolyte, Gazda et al. investigated the possible proton conduction in 

BaZr0.2Sn0.2Ti0.2Hf0.2Ce0.2O3–δ, BaZr0.2Sn0.2Ti0.2Hf0.2Y0.2O3–δ, BaZr1/7Sn1/7Ti1/7Hf1/7Ce1/7Nb1/7Y1/7O3–δ, and 

BaZr0.15Sn0.15Ti0.15Hf0.15Ce0.15Nb0.15Y0.10O3–δ materials [28]. These successful cases of HEO applications in P-SOC 

indicate that further optimization of the composition and microstructure of HEO will allow higher properties. 

Nevertheless, the design of HEO, especially the choice of cations at different sites, largely relies on reported air 

electrode oxides. At the same time, it will take a long time and high cost for repeat experiments to screen HEO and 

investigate the interaction of each metal cation because of thousands of possible compositions. 

 

Figure 2. (a) Structure of HEO derived from ABO3 perovskite; (b) Summary of peak power density at 600 ℃ and current density 

at 600 ℃ under 1.3 V of P-SOCs with different types of air electrodes. 

Material properties are closely related to chemical compositions, crystal structures, physical properties of elements, 

and other multi-dimensional data. It is expected that material properties can be reliably predicted, thus providing 

theoretical assistance and guidance for the design of materials. Recently, material science, catalysis, etc., have been 
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revolutionized by machine learning (ML) models due to the development of artificial intelligence. ML offers advantages 

in accurate prediction from large amounts of data, low cost by automating processes, handling complex data sets, and 

so on. According to the specific problems, data features, algorithm performance, and application scenarios, there are 

some typical supervised learning algorithms commonly used in ML, such as (1) decision trees (DT) display decision 

rules and classification results in a tree-like data structure; (2) random forest (RF) combines the output of multiple DT 

to reach a single result and can be used to handle both classification and regression problems; (3) support vector 

machines (SVM) can be used for liner or nonlinear classification, regression, and even outlier detection tasks; (4) K-

Nearest neighbors (KNN) uses proximity to make classifications or prediction about the grouping of an individual data 

point; (5) neural networks is a model making decisions in a manner similar to the human brain [29,30]. In the case of 

P-SOC and oxide-ion solid oxide cell (O-SOC), several works have successfully predicted air electrodes in terms of 

hydrated proton concentration, oxygen reduction activity, and thermal expansion coefficient by using ML [31–34]. For 

instance, Zhai and his coauthor demonstrated an experimentally validated ML-driven approach to the discovery of 

outstanding air electrodes, which indicated that ionic Lewis acid strength (ISA) was critical to enhance the surface 

exchange kinetics of oxides. In this way, Sr0.9Cs0.1Co0.9Nb0.1O3 (SCCN) was selected from 6871 distinct compositions 

and achieved an extremely low area-specific resistance (ASR) of 0.01 Ω cm2 at 700 ℃, contributing to peak power 

density of 1.52 W cm–2 at 600 ℃ [31]. However, the available papers in P-SOC with the utilization of ML to screen 

new materials or forecast the properties are still scarce. 

As mentioned above, the complex structure and composition of HEO cause challenges in studying its various 

possible compositions by using traditional experimental and computational methods, including density functional 

theory (DFT). Fortunately, the maturing ML techniques make it possible to explore HEO air electrodes based on 

experiment data from low or medium-entropy oxides, structure data from DFT like the open quantum materials database 

(OQMD), materials projects, and so on. Here, the OQMD is a database of DFT-calculated thermodynamic and structural 

properties of materials, which offers the formation energy, decomposition energy, and stability of materials [35,36]. 

Materials project also provides open web-based access to computed information on known and predicted materials, 

which includes density, magnetic properties, electronic structure, vibrational properties, etc [37]. Moreover, ML can 

not only build HEO compound systems from different cations but also can directly make a prediction in terms of HEO 

properties, such as, formation energy, oxygen vacancy concentration, proton conductivity, etc. by training reasonable 

and accurate ML models. Recently, many works combining high entropy compounds with ML were reported [38–45]. 

For instance, Divilov et al. developed a convolutional algorithm and introduced a disordered enthalpy-entropy 

descriptor to represent the balance between entropy gains and enthalpy costs, enabling the discovery of novel high 

entropy ceramics [38]. Mints et al. developed an experimentally obtained dataset of 350 nanoparticles to find the optimal 

catalyst AuIrOsPdRu for oxygen evolution reaction (OER) [41]. In the case of HEO, Seyedsaeed et al. made four robust 

ML models, including adaptive boosting (AdaBoost), categorical boosting (CatBoost), RF, and eXtreme Gradient 

Boosting (XGBoost) to predict the selectivity of the oxidation reactions. The results indicated that the XGBoost model 

exhibited the highest accuracy and the noble metal-free (CoFeMnCuNiCr)3O4 HEO nanoparticles grafting on reduced 

graphene oxide displayed excellent catalytic performance for aerobic and solvent-free oxidation of benzyl alcohol [42]. 

An integrated explainable ML algorithm with high throughput first principles and experimental verification was used 

to screen low thermal conductivity A2B2O7-type HEO. In this way, (Sc0.2Y0.2La0.2Ce0.2Pr0.2)2Zr2O7 was selected from 

6188 (5RE0.2)2Zr2O7 HEO, which performed low experimental thermal conductivity of 1.69 W m–1 K–1 and was close 

to the predicted value (1.59 W m–1 K–1) [44]. Not only the target properties of HEO but also the crystal structure can be 

predicted by ML. Liu et al. successfully established the crystal structure prediction model for HEO, whose feature 

importance in descending order was anion-to-cation radius ratio, the difference in Pauling, the difference in Mulliken 

electronegativities, atomic size mismatch, element&content, sintering method, and entropy of mixing, being a good 

agreement with the law of crystal chemistry and previous experimental results [43]. To conclude, a combination of 

HEO and ML has been confirmed as an effective and promising strategy to study novel HEO materials and can be 

extended to HEO air electrodes for P-SOC. 

Here, as shown in Figure 3, a continuous ML process of data collection, feature engineering, algorithm, iteration, 

optimization, and evaluation is given for HEO air electrode prediction [5,46]. (ⅰ) The problems related to HEO should 

be confirmed, which can be one or more properties, compositions, and structures. (ⅱ) Establishing high-quality database, 

including the literature and DFT data, that should be representative and reasonable. (ⅲ) Making feature engineering, 

i.e., the process of transforming collected data into corresponding information for use by ML models. The features 

should be the key points of HEO, such as coordination numbers, chemical bonding, atomic coordinates, etc. ML models 

can be explicable by understanding these features. (ⅳ) ML model selection, training, and analysis, that is, a proper ML 
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algorithm or comparison of several algorithms, the model learns the characteristics and patterns of data and aims to 

minimize the training error. (ⅴ) Model performance validation and adjustment to reduce the risk of overfitting or 

underfitting. At the same time, the interpretability between features and target properties should be given. (ⅵ) 

Application, predicting HEO air electrode, preparation, and measuring corresponding properties to verify the result of 

ML. In this way, not only the discovery of HEO can be realized, but also the structure-property relationships of HEO 

can be comprehensively understood. 

 

Figure 3. Schematic of an ML training process for HEO air electrode. 

In summary, this perspective focuses on the development of high-performance air electrodes for P-SOC at 

intermediate temperatures, which requires outstanding stability, catalytic ability, and conductivity. The concept of HEO 

provides new possibilities for air electrode materials. However, there are still many challenges to the design of HEO air 

electrodes. First, the complexity of composition makes it time-consuming to prepare material and perform experimental 

verification. Second, the relationship between the element properties and HEO electrochemical performance needs in-

depth understanding and explanation. Third, the contribution of entropy stabilization to P-SOC stability is not clear. 

The establishment of explainable ML models makes it possible to predict the formation energy of oxide, oxygen 

evolution reaction, oxygen reduction reaction, ionic and electronic conductivity, thermal expansion coefficient, reaction 

enthalpy of HEO and steam, and so on. In this way, a promising and efficient strategy can be provided to discover high-

performance HEO air electrodes enhancing the electrochemical performance of P-SOC. 
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