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ABSTRACT: The desire to harness nature’s capability of precise gene expression regulation has motivated the pursuit of synthetic 

gene circuits. However, designing and building novel synthetic gene circuits with predictable dynamics is nontrivial. To facilitate 

the design, cell-free systems have emerged as an effective alternative testbed to living biological systems in characterizing and 

prototyping synthetic gene regulatory networks, given its relative simplicity and designability in terms of cellular contents. 

Meanwhile, as parameterizing and analyzing first principle-based models can shed light on the required kinetic parameter values, 

thus the specific regulatory components, for the desired dynamics, coupling mathematical modeling with cell-free experiments has 

become an effective approach in exploring novel synthetic gene circuits. In this mini-review, we provide an overview of current 

progress on using deterministic first principle-based mathematical modeling in conjunction with cell-free systems, in designing and 

characterizing novel gene circuits, as well as the standing challenges and issues with this approach. 
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1. Introduction 

A gene regulatory network is composed of DNAs, RNAs, and proteins, and governs the expression of the target 

gene involved in the network. Living cells leverage gene regulatory networks, or collectively known as networks, to 

process information about the environment and to adapt to the surroundings by expressing genes accordingly. In 

synthetic biology, the main goal is to manipulate the inner networks of cells to achieve desired dynamics, thus enabling 

applications in diagnostics [1–3] biofuels [4,5], and large-scale protein synthesis [6,7]. Therefore, understanding the 

characteristics of these networks and being able to build networks that replicate the functionality of innate gene regulatory 

networks can empower us to manipulate native cell behavior and even manufacture synthetic cells with optimal 

performance for targeted applications. To achieve these objectives, it is necessary to first discover, create, characterize, and 

prototype the gene regulatory networks. Towards this end, synthetic biologists have excelled in designing and analyzing 

gene circuits, the synthetic counterparts of the native gene regulatory networks. Figure 1 gives an example of the widely 

used RNA-based gene regulation tools and some of the well-known natural and synthetic gene circuits. 
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Figure 1. Popular RNA-based gene expression regulatory tools include the CRIPSR system [8], the small transcription activating 

RNAs (STAR) [9], and the toehold switches [10] are leveraged to realize the transcriptional and translational regulation in a gene 

circuit. These tools can enable the design and construction of a wide range of natural and synthetic regulatory circuits, spanning 

from feedforward loops [11], logic gates [12], and toggle switch [13] to advanced biomolecular perceptron networks [14], oscillator 

[15] and biomolecular integral feedback controller [16]. Note, all drawings are reconstructed based on the corresponding references. 

The dynamic and complex cellular environment hampers studying gene circuits inside living cells. Beyond the 

primary task of protein synthesis, cells engage in several activities, such as metabolic processes and reproduction, 

necessitating considerable energy expenditure [17,18]. To overcome these obstacles and study gene regulatory networks 

independently, researchers have introduced cell-free systems. These systems mimic the complex cellular gene 

regulatory network outside living cells by segregating cellular growth and reproduction through the utilization of 

cellular extracts. Hence, the cell-free system has emerged as a promising alternative to in vivo gene expression 

techniques, affording precise control over cellular transcription and translation machinery [19–21]. The inherent 

characteristics of the cell-free system, such as fast performance, decoupled from cell growth, unbiased nature towards 

DNA templates, and easy tunability, make it an ideal system for understanding complex genetic networks [22]. 

While the advent of cell-free systems has significantly mitigated the challenges of performing in vivo experiments, 

conducting experiments can still be laborious, especially when exploring new designs, and this can be alleviated with 

mathematical modeling. In general, mathematical models can be developed with different approaches, such as first 

principle-based and data-based models. Data-based models learn the underlying dynamics of the system based on 

experimental observations and are particularly appealing when a theoretical understanding of the system dynamics is 

missing but massive experimental data is available. On the other hand, with the current understanding of fundamental 

principles, researchers can construct first principle-based models to predict the behavior of a given system, avoiding the 

requirement of extensive data collection. Furthermore, when coupled with experimental measurements, such first 

principle-based models can, in turn, help refine our understanding of the fundamental principles. Popular model types 

for gene circuits design normally take the form as ordinary differential equations (ODEs) [23–26], partial differential 

equations when considering the heterogeneity of cellular resource distribution (deterministic or stochastic) [27,28], or 

probabilistic models such as Markov state models [29,30]. Over the past decades, mathematical models have gained 
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increasing interest in the study of gene circuits. Table 1 summarizes the main model types for gene circuits as well as 

some of the corresponding works over the recent years.  

Table 1. Summary of popular modeling types and corresponding noticeable works. 

Model Application Mathematical Description Work 

Ordinary 

Differential 

Equations 

Parameter estimation and 

optimization, RNA regulators, 

logic circuits, feed-forward 

loops, antithetic integral 

controller, gene networks 

dynamics 

𝑑𝐺𝐴

𝑑𝑡
=  𝛼 · [

𝐺𝐵
𝑛

𝑘𝑝  +  𝐺𝐵
𝑛]  −  𝛿 · [𝐺𝐴] 

where 𝛼, 𝛿 and 𝑘𝑝  are transcription rate, 

degradation rate and Hill-function dissociation 

constant, respectivetely.  

[11,23–25,31] 

Partial 

Differential 

Equations 

Diffusion of cellular resources 

to account for spatial 

heterogeneity in cells. 

𝐽(𝑥, 𝑦) = 𝐷(−
𝜕𝑦(𝑡, 𝑥)

𝜕𝑥
𝑣(𝑥) + 𝑦(𝑡, 𝑥)

𝜕𝑣(𝑥)

𝜕𝑥
) 

where J is the flux of the cellular species, D is the 

diffusion coefficient, v is volume, y is concentration 

per unit length, x is distance.  

[27,28] 

Markov State 

Models 

Stochastic multistability and 

state-transitions in gene 

networks, parameter estimation. 

𝑃(𝑋1, … , 𝑋𝑃)  =  ∏ 𝑃(𝑋𝑖|𝑃𝛼(𝑋𝑖)
𝑃

𝑖=1
 

where gene 𝑖 is represented as 𝑋𝑖  (𝑖 = 1, 2, … , 𝑝) 

[29,30] 

Artificial Neural 

Networks 

Prediction of states and phase 

space of genetic circuits 

𝑑𝑥𝑖

𝑑𝑡
 =  𝑓𝑖(∑(𝑎𝑖𝑗𝑥𝑗  −  𝜃𝑖))  −  𝑏𝑖𝑥𝑖 

where 𝑥 represents internal states, 𝑏𝑖 and 𝑎𝑖𝑗 

represent time constant and connection weights, 

respectivetelly. 

[32] 

In this review, we provide an overview of recent advances in using deterministic ODEs-based mathematical 

modeling in conjunction with cell-free systems in designing and characterizing novel gene circuits. Specifically, we 

focus on recent developments in how mathematical models and cell-free systems cooperatively facilitate the exploration 

of novel gene circuit designs for specific regulatory parts and desired output dynamics, as outlined in Figure 2. 

 

Figure 2. Cell-free systems and mechanistic mathematical modeling can cooperatively contribute to the efficient design and 

prototyping of novel synthetic gene circuits, with predictable dynamics. 

2. Cell-Free and Whole Cell Experiments for Model Analysis 

The cell-free system is an ideal system for genetic parts and circuits characterization due to its fast performance, 

focused analysis on the task at hand, and easy tunability. However, to fully unleash the potential of cell-free systems for 

rapid circuit characterization and construction, it is essential to understand the property of the system itself. To achieve 

this, besides direct experimental comparison with the systems, mathematical models offer a more economical alternative. 
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Marshall and Noireaux developed a useful, simple ODE model to describe an all-E. coli TX-TL (transcription-

translation) system, controlled by different sets of promoters and DNA elements commonly used in gene circuits [33]. 

The model was able to capture the TX-TL regimes and saturations due to transcription and/or translational machinery 

depletion. They chose three sigma factor 70 promoters and UTRs (untranslated regions) of different strengths and 

combined them in nine combinations to predict protein synthesis rates. The model was sensitive to varying ribosome 

concentrations and mRNA degradation kinetics, less sensitive to total core RNA polymerase and deGFP maturation, 

but not sensitive to the Michaelis-Menten constant for transcription and translation and to the concentrations of sigma 

factor 70. Finally, they integrated these parameters to create a load calculator that calculates the burden on the TX-TL 

components, factoring in promoter and UTR strength and gene length. These findings reveal the relationship between 

the cell-free system environment and the kinetic parameters in the model, thus providing guidelines for future 

researchers in designing the cell-free system environment as well as the appropriate design of the gene circuit parts, 

such as promoters and UTRs [34,35], for predictable dynamics or to optimize the output dynamics given a specific gene 

circuit design [36]. 

Another type of modeling is known as constraint-based modeling, which estimates the performance of metabolic 

networks. The Palsson group initially designed the metabolic model for E. coli [37] and incorporated transcription and 

translation template reactions [38] before 2010. In 2012, the Voight group added other models to improve the accuracy 

at the DNA and protein sequence level, including promoter initiation [39]. Most recently, the Varner group tailored the 

model for the cell-free system by deleting growth-associated reactions and other modifications and named it sequence-

specific constraint-based modeling [40]. For simulation, they chose to express the proteins chloramphenicol 

acetyltransferase (CAT) and dual emission green fluorescent protein (deGFP), calculating transcription rates and 

maximizing translation rates. The constraints applied depended on previously reported literature. For example, 

metabolic constraints could be applied for CAT production under a T7 RNA polymerase promoter, but not for deGFP 

under a P70a endogenous RNA polymerase promoter, because the metabolic reactions had not been recorded for the 

latter. However, the endpoint and dynamic measurements of the protein produced showed good agreement with the 

models for both CAT and deGFP. In this paper, they also tested how these models could provide deeper insights into 

metabolic processes by simulating reactions and obtaining all details, then experimentally testing the reactions to see if 

the protein output matched what was observed when the metabolic reaction was allowed to run as simulated, or when 

the part studied was inhibited or taken out completely. They found that some simulated metabolic reactions and 

component concentrations correlated better with experimental results than others. Identifying these discrepancies is 

crucial for refining models. They were able to design a model to predict system productivity and energy efficiency 

based on the carbon number of the protein, with and without amino acid supplementation in a glucose-supplied cell-

free protein synthesis system, even for proteins not used in the original dataset of the simulations [40]. 

3. Cell-Free Experiments and Modeling for Gene Circuit Design 

The performance of a novel gene circuit relies on the design of the interactions between constituent components 

(i.e., circuit topology), the specific realization of the design (i.e., parts selection), and the interactions between the circuit 

and the host system (e.g., resource competition) [41,42]. Based on understanding of the underlying mechanism, the 

dynamics of a given gene circuit can be simulated with mass action equations, which typically take the form of ordinary 

differential equation, using species concentration and reaction rate constants. Such a formation permits the additions of 

new parts and interactions upon existing designs, with complexity depending on the availability of experimental data. 

Examples of circuitry that can be mapped by an ODE, so far, include the response time of an RNA circuit and the 

concentration of components in the system at a given time [22]. Other important models include rate constants and 

steady-state kinetic parameters of certain activities in the systems. These have also been found for ClpXP protease 

[43,44], protein synthesis rate [43], mRNA concentration at a given time [43], transcription factor-based biosensor and 

its genetic circuit cascade [45]. 

Based on preliminary experimental data, researchers have also developed holistic mathematical models to further 

guide the design of new gene circuits. Examples include the construction of a pulse generator using the timescale 

difference between STARs and CRISPRi regulation in [46]; the characterization of a coherent feedforward loop as a 

noise filter in [47]; the quantification of an integral feedback controller in [48]; the parameterization of RNA genetic 

circuits in [24]; and the modeling and parameterization of transcription and translation processes in [47,49]. These 

works demonstrate the potential of combining modeling and cell-free systems to improve the efficiency of 

characterizing and designing gene circuits, thereby minimizing experimental efforts [47]. 
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To further facilitate the experimental construction of circuits, automation of circuit design via software tools has 

thrived over the past decades. Examples include Cello, a Java-based software to design ordered and tagged DNA 

sequences for gene networks beyond E. Coli cells [50]; COPASI, a biochemical simulator based on numerical methods 

that facilitates the user to solve biological systems problems through different mathematical approaches [51]; iBioSim, 

a computational tool to design and simulate synthetic genetic circuits based on experimental data and biological 

knowledge from other genetic circuits [52]; Tellurium, a python-based software developed for biological systems 

examination including mathematical modeling, simulation and analysis tools [53]; promoter/RBS calculator, a multi-

parameter model to predict transcriptional components such as sigma factors promoters with desired transcription rates 

[54]; and Galaxy SynbioCAD, a portal that integrates different computational tools to design and engineer metabolic 

pathways for specific desired chemical targets [55]. Efforts for cell-free systems have also started to attract attention. 

In 2021, the Murray group described a toolbox called txtlsim created to assist genetic circuit modeling developers [56]. 

The toolbox considers cell-free systems conditions, such as resource loading, consumption, and degradation, making it 

useful for modeling the dynamics of transcription-translation reactions. Additionally, to predict the in vitro behavior of 

several genetic circuits, the toolbox provides a library of parts that can be combined in different patterns. With a simple 

interface and straightforward commands, this tool allows the description of complex biological interactions and, hence, 

the dynamics of the system. Furthermore, the paper presents a multi-stage Bayesian inference procedure for 

characterizing its parameters, which were used to predict and experimentally validate the behavior of an incoherent 

feed-forward loop. Another example includes that the Murray group presented a full-stack modeling, analysis, and 

parameter identification pipeline to guide the modeling and design of gene circuits with specific functions. The authors 

integrated cell-free systems with mechanistic modeling and model reduction to characterize integrase and excisionase 

activity for the modeling and construction of gene circuits [57]. These tools further facilitate the rapid design and 

construction of novel gene circuits with predictable dynamics. 

4. Discussion 

The success of cell-free systems arises from its decreased complexity and constraints associated with in vivo gene 

expression, such as genetic variability, membrane barriers, cell viability, manipulation of living organisms, and cellular 

growth [21,58,59]. The power of this emerging tool has been explored for pollutants identification, RNA genetic circuits 

dynamics, enzyme expression, rapid field-portable diagnosis, and industrial applications [60–63]. An important feature 

of cell-free reactions is their ability to be lyophilized or dried and subsequently reactivated through controlled 

temperature adjustments and rehydration. This property enhances the temporal flexibility of experimental protocols and 

facilitates their application in non-laboratory settings [2]. Additionally, computational and mathematical tools have 

been utilized to improve the predictability of cell-free reaction behaviors. However, these tools have encountered 

challenges in accurately modeling the stochastic nature of genetic circuits [24,25,64]. 

While models characterized by kinetic parameters defined according to understanding of the biological systems, 

such as the ODE models, are useful for simulating circuit dynamics, these models are often overfitted and suffer from 

poor transferability, i.e., one set of fitted parameters can hardly be used to predict a new design or in new systems, 

despite the similarity in the components used. Several reasons could attribute to this phenomenon, such as model 

structural and parameter identifiability, optimization for parameterization, as well as resource competition or changes 

in cellular context. 

Structural and parameter identifiability problem has been a long-standing topic in modeling, where structure 

identifiability refers to model structure issues that lead to indeterminable parameters, and practical identifiability refers 

to the lack of measurements to obtain precise parameters [65]. Notable works include the following, as examples. In 

[66], the authors presented a comparison of methods often used to describe non-linear dynamic models in systems 

biology, such as Taylor series, generating series method, similarity transformation, differential equations, test for 

reaction networks, among others. A MATLAB toolbox called STRIKE-GOLDD offers an efficient structural 

identifiability analysis by considering parameters as state variables and decomposing the model into sub models, this 

tool eliminates parameters already classified as identifiable to reduce the problem size [67]. A combination of sensitivity 

analysis and identifiability tests was proposed by [68], where linear correlations between parameters are obtained 

through a logical numerical approach. One future direction can be the investigation of probabilistic model fitting for a 

distribution of parameter values to increase the possibility of applying to new systems. However, such an approach 

might only provide a qualitative estimation rather than an accurate quantitative simulation. Alternatively, a physics-

informed machine learning-based model, combined with transfer learning could be a potential solution [69]. In this 
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approach, a machine learning-first principal hybrid model would be developed and parameterized with experimental 

measurement. When applying this to a new system, additional yet small amount of experiments would be performed 

for model refitting using the previously fitted parameters, thereby reducing the cost of materials and computation. 

Transfer learning has shown great promise in many fields, with reduced amount of data for new systems. We expect its 

application to gene circuit modeling to facilitate future model development and circuit design [70–72]. 

Parameterization is another potential obstacle in developing ODE-based models for circuit simulation. Depending 

on the complexity as well as the topology of the model, the ODEs could have singular points, which could result in 

failure with current widely used integration solvers, that no accurate solutions are to be obtained. Furthermore, increased 

model complexity with an increased number of parameters generally requires more experimental measurements 

compared to a simpler model for accurate parameterization, but this comes with the risk of overfitting. The relationship 

between sample size, model complexity and parameterization accuracy has been constantly explored in the field of 

system identification, where researchers investigate the challenges of model estimation for dynamic systems [73]. This 

issue is frequently addressed using classical approaches, including the realization of linear state-space models and 

prediction-error method, as well as integrated methodologies that combine control and identification, such as adaptive 

control [74]. The applications of system identification extend well beyond control theory, and its application to other 

system could significantly enhance the development of models for gene circuits simulation [75]. In [76], the authors 

highlighted the challenge of applying system identification methods to biological systems given time scale 

measurements issues, where they presented a new identification method that uses unequally spaced sparse time series 

data with different time scales to describe PC12 cells growth in vivo system. Built upon these existing efforts, we 

anticipate future work with extensive experimental validations to further benefit the modeling of gene circuits for wide-

range applicability. Given the fast-prototyping advantages of cell-free systems, and its flexibility in designing 

experimental conditions compared to in vivo experiments, we anticipate cell-free experiments will serve as an ideal 

system for such investigations. 

Resource competition is a long-known culprit for the failure of newly designed circuits when implemented in host 

systems [77–81]. Therefore, understanding the robustness of the designed circuit to resource competition is critical to 

delivering predictable functions. The advantages of manipulating the resource condition in cell-free systems present an 

ideal testbed for quantifying the effect of resource competition to circuit dynamics. Despite existing work on 

characterizing and leveraging the negative impact of resource competition to circuit design and implementation [82–

84], further efforts on this topic would still benefit the development of gene circuit design, and we expect cell-free 

systems and modeling to contribute significantly to this effort. 

The success of machine learning in biology has also promoted its application in the design of gene circuits. In 2020, 

Church and Collins showed how decision trees and other machine learning algorithms could provide a better 

understanding of which attributes are the most influential on the design of cell-free systems [85,86]. This mathematical 

artifact allows for the behavior of the system to be characterized by the neural network without the need for a priori 

physical knowledge of the system. Angenent-Mari et al. demonstrated that Deep Neural networks (DNN’s) are not only 

capable of predicting the functionality of components of the circuitry but also useful in providing a more “human 

understandable” behavior of their components [86]. However, training the model generally requires a considerable amount 

of data, which can be a barrier with in vivo experiments, but could potentially be addressed with cell-free systems. 
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