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ABSTRACT: It is very important to clarify the mechanism of high-temperature superconductivity in strongly correlated electron 

systems. The mechanism of superconductivity in high temperature cuprate superconductors has been studied extensively since their 

discovery. We investigate the properties of correlated electron systems and mechanism of superconductivity by using the 

optimization quantum variational Monte Carlo method. The many-body wave function is constructed by multiplying by correlation 

operators of exponential type. We show that d-wave superconducting phase exists in the strongly correlated region where the on-

site repulsive interaction is as large as the bandwidth or more than the bandwidth. The d-wave pairing correlation function is shown 

as a function of lattice sites, showing that the long-range order indeed exists. 
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1. Introduction 

The physics of high-temperature superconductors have been studied intensively for more than 35 years since the 

discovery of high-temperature superconductivity [1]. It is still a challenging issue to clarify the mechanism of high-

temperature superconductivity. Since the parent materials of high-temperature cuprates are Mott insulators when no 

carriers are doped, high-temperature cuprates are typical strongly correlated electron systems. The strong correlation 

makes it hard to elucidate the mechanism of superconductivity. Thus, it is important to understand the electronic 

properties of strongly correlated electron systems. 

The CuO2 plane is commonly contained in various high temperature cuprates and consists of oxygen atoms and 

copper atoms. It is certain that the CuO2 plane plays an important role in the emergence of high-temperature 

superconductivity [2–8]. The fundamental and important model on this plane is the three-band d-p model [4–26]. The 

two-dimensional (2D) Hubbard model is regarded as an effective model where we consider only d electrons by 

integrating out the freedom of p electrons. The 2D Hubbard model [27–29] is also the basic model for cuprate 

superconductors. 

The 2D Hubbard model contains fruitful physics although it looks very simple, and it may include effective 

interactions that induce electron pairing to bring about high-temperature superconductivity. The Hubbard model has 

been studied intensively to clarify the pairing mechanism of high-temperature superconductivity [30–49]. One may 

wonder why the effective attraction arises between electrons from the on-site repulsive Coulomb interaction. This 

effective pairing interaction may originate from the effective nearest-neighbor exchange coupling and the kinetic energy 

effect. On this subject, the ladder Hubbard model (two-chain model) has also been studied [50–55]. 

The Hubbard model was first introduced to understand the metal-insulator transition [27]. Recent studies indicate 

the possibility of the existence of a superconducting (SC) phase in the parameter space of the hole density, the strength 

of Coulomb interaction U and the next nearest-neighbor transfer integral 𝒕′ in the ground state [47]. These three 

parameters are important and give plentiful structures of the phase diagram that include the superconducting phase and 
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the antiferromagnetic phase. The transfer 𝒕′ plays an essential role in determining the stability of magnetic states. For 

example, in the case where 𝒕′ = 𝟎, the antiferromagnetic state becomes unstable when holes are doped. The 2D 

Hubbard model is also useful to understand the appearance of inhomogeneous electronic states such as stripes [56–71] 

and checkerboard-like density of states [72–75]; the existence of these inhomogeneous states has indeed been reported 

for high-temperature cuprates. 

In the study of cuprate superconductors and also iron-based superconductors, lattice and charge effects play an 

important role. Inhomogeneous striped states could be stabilized associated with lattice distortions [62]. Many 

interesting properties have been reported concerning lattice effects such as an anomalous isotope effect [76–79] and a 

shape resonance in a superlattice of quantum strings [80,81]. In the study of cuprate superconductors Bi2Sr2CaCuO8+y 

and La2CuO4+y for which mobile oxygen interstitials by using local probes, a scenario has been shown that a strongly 

correlated Fermi liquid coexists with stripes that are made of anisotropic polarons condensed into a generalized Wigner 

charge density wave [82–84]. 

The relation between the Hubbard model and the d-p model was investigated in the early state of the study of high-

temperature cuprates by Feiner et al. [85] They were able to reduce the d-p model into an effective one-band model by 

means of the cell-perturbation method. It has also been shown by numerical calculations that the Hubbard model and 

the three-band d-p model exhibit similar electronic properties [14,26]. 

In order to explore the superconducting ground state, it is favorable to suppress magnetic correlations and magnetic 

instabilities. For this purpose, we consider the strongly correlated region with large U. The strong antiferromagnetic 

correlation is suppressed by doped hole carriers when U is large. In this region we calculated superconducting properties 

in the 2D Hubbard model, and the existence of a superconducting phase is followed. 

In Section 2, we discuss the critical temperature of superconductivity in many-electron systems. We discuss 

improved many-body wave functions in Section 3. In Section 4, we show the results obtained by the optimization 

variational Monte Carlo method. We show the SC order parameter as a function of U and phase diagrams when we vary 

the hole density x. We discuss the kinetic energy driven superconductivity in the strongly correlated region. We also 

examine the possibility of superconductivity in the nematic charge-ordered phase. In Section 5, we exhibit pair 

correlation function as a function of lattice sites. This shows that the pair correlation function is almost constant at long 

distances and the wave function indeed has long-range superconducting order in the strongly correlated region. We also 

discuss the duality of strong electron correlation, which means that the strong correlation can be an origin of attractive 

interaction of d-wave electron pairs and at the same time, it suppresses the pair correlation function. 

2. Superconductivity in Many-Electron Systems 

It is reasonable to expect that when the energy scale of an interaction is very large, we can expect superconductivity 

with high critical temperature 𝑇𝑐. Since the energy scale of the Coulomb interaction is of the order of eV, the Coulomb 

interaction is one of the candidates to give high-temperature superconductivity. For materials shown in Table 1, we can 

confirm that the following empirical relations hold for the superconducting critical temperature: 

𝑘𝐵𝑇𝑐 ≃ 0.1 𝑡 (𝑚∗ 𝑚0⁄ ),⁄  (1) 

where 𝑡 denotes the transfer integral, and 𝑚∗ and 𝑚0 are the effective mass and bare mass of electrons, respectively. 

The Table 1 shows typical values of 𝑡, the ratio 𝑚∗ 𝑚0⁄  and 𝑇𝑐. The order of 𝑇𝑐 for correlated electron materials is 

consistent with the formula in Equation (1). For high-temperature cuprates, the transfer integral t is estimated as 

𝑡~0.51 eV and 𝑇𝐶 is of the order of 100 K. Since the transfer t of iron pnictides is about five times smaller than that 

of cuprates, iron pnictides have lower 𝑇𝑐 than cuprate superconductors. The critical temperature 𝑇𝑐 of heavy fermions 

is very low although heavy fermion materials are strongly correlated electron systems. This is due to large effective 

mass of f electrons which is as large as 100~1000 times the band (bare) mass 𝑚0. Then the characteristic energy scale 

is reduced considerably so that 𝑇𝑐 is of the order of 1 K. 
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Table 1. The transfer integral t, effective mass ratio 𝑚∗ 𝑚0⁄  and critical temperature 𝑇𝑐  in correlated electron systems. For 

Hydrides, the Debye frequency 𝜔𝑙𝑛 is shown instead of t. For heavy fermion materials, 𝑡 (𝑚∗ 𝑚0⁄  )⁄  corresponds to the Kondo 

temperature 𝑇𝐾. 

 t 𝒎∗ 𝒎𝟎⁄  𝒕 (𝒎∗ 𝒎𝟎⁄ )⁄  𝑻𝒄 References 

Cuprate superconductors 5000 K 5 1000 100 K [85] 

Iron pnictides 1000 K ~2 500 50 K [86] 

Heavy fermion materials 10,000 K 100~1000 10~100 1~10 K [87–89] 

Organic superconductors 200~500 K 2~5 100 10 K [90] 

 𝜔𝑙𝑛 𝑚∗ 𝑚0⁄  𝜔𝑙𝑛 (𝑚∗ 𝑚0⁄  )⁄  𝑇𝑐 Reference 

Hydrides H3S 1000 K ~1 1000 100 K [91] 

3. Optimization Variational Monte Carlo Method 

3.1. Hamiltonian 

We consider the two-dimensional Hubbard model that is one of simplest model in correlated electron systems. The 

Hamiltonian is given by 

𝐻 = ∑ 𝑡𝑖𝑗𝑐𝑖𝜎
†

𝑖𝑗𝜎

𝑐𝑗𝜎 + 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

, (2) 

where 𝑡𝑖𝑗 indicates the transfer integral which takes the value 𝑡𝑖𝑗 = −𝑡 when i and j are nearest-neighbor pairs and 

𝑡𝑖𝑗 = −𝑡′ when i and j are next nearest-neighbor pairs. U denotes the strength of the on-site repulsive Coulomb 

interaction. The energy is measured in units of t throughout this paper. 

3.2. Many-Body Wave Functions 

3.2.1. Optimized Many-Body Wave Functions 

The wave function of non-interacting many fermions is written as a Slater determinant. In a weakly interacting 

many-fermion system, the wave function shows a deviation from the simple Slater determinant. In many-fermion 

systems with strong interaction between fermions, we should consider strong correlation in many-body wave functions. 

For the Hubbard Hamiltonian with large interaction U, one convincing way to construct the many-fermion wave 

function is to start from the Gutzwiller wave function. The Gutzwiller wave function is written as 

𝜓𝐺 = 𝑃𝐺𝜓0, (3) 

where 𝜓0 is one-particle state given by a Slater determinant and 𝑃𝐺 denotes the Gutzwiller operator that is given as 

𝑃𝐺 =  ∏(1 − (1 − 𝑔)𝑛𝑗↑𝑛𝑗↓)

𝑗

 (4) 

where 𝑔 is the variational parameter in the range of 0 ≤ 𝑔 ≤ 1. We usually take 𝜓0 as the Fermi sea, the BCS wave 

function or a state with some magnetic or charge orders. 

The Gutzwiller wave function can be improved by several ways. One is the well-known Jastrow function; this is 

written as 

𝜓𝐽 = 𝑃𝐽𝑃𝐺𝜓0, (5) 

where the Jastrow operator 𝑃𝐽 is given by 

𝑃𝐽 = ∏ (1 − (1 − 𝜂) ∏[𝑑𝑗(1 − 𝑒𝑗+𝜏) + 𝑒𝑗(1 − 𝑑𝑗+𝜏)]

𝜏

) ,

𝑗

 (6) 

where 𝑑𝑗 is the operator for the doubly occupied site (so called doublon operator) given by 𝑑𝑗 = 𝑛𝑗↑𝑛𝑗↓, and 𝑒𝑗 is that 

for the empty site (holon operator) given as 𝑒𝑗 = (1 − 𝑛𝑗↑)(1 − 𝑛𝑗↓). 𝜏 runs over all nearest-neighbor sites 𝑗. 𝜂 is 

introduced as the variational parameter in the range of 0 ≤ 𝜂 ≤ 1. 

The other effective way to improve the wave function is to multiply by the exponential operator 𝑒−𝜆𝐾  [46–48,92–97]: 
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𝜓𝜆 = 𝑒−𝜆𝐾𝑃𝐺𝜓0 = 𝑒−𝜆𝐾𝜓𝐺 , (7) 

where 𝐾 is the non-interacting part of the Hamiltonian, which is called the kinetic operator in this paper, and is given by 

𝐾 = ∑ 𝑡𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖𝑗𝜎

. (8) 

The variational parameter 𝜆 is introduced to minimize the expectation value of the ground-state energy. This wave 

function can be improved further by multiplying by the Gutwiller operator and the kinetic operator again [46,93]: 

𝜓𝜆
(2)

= 𝑃𝐺(𝑔′)𝑒−𝜆𝐾𝑃𝐺(𝑔)𝜓0 = 𝑃𝐺(𝑔′)𝜓𝜆, (9) 

𝜓𝜆
(3)

= 𝑒−𝜆′𝐾𝑃𝐺(𝑔′)𝑒−𝜆𝐾𝑃𝐺(𝑔)𝜓0 = 𝑒−𝜆′𝐾𝑃𝐺(𝑔′)𝜓𝜆, (10) 

where 𝑃𝐺(𝑔′) is the Gutzwiller operator with variational parameter 𝑔′. 𝜆′ and 𝑔′ are in general different from 𝜆 and 

𝑔, respectively. We have correlated wave functions 𝜓𝐺, 𝜓𝜆
(1)

≡ 𝜓𝜆, 𝜓𝜆
(2)

, 𝜓𝜆
(3)

, and it is possible to generalize further. 

We discuss the stability of superconducting state and magnetically ordered states by using this kind of improved 

and optimized wave functions. We can also discuss the metal-insulator transition on the basis of this wave function 

where the strong correlation between electrons plays an essential role [97]. 

3.2.2. Correlated Superconducting Wave Function 

The correlated superconducting state is formulated starting from the BCS wave function. The BCS wave function 

is written as 

𝜓𝐵𝐶𝑆 = ∏(𝑢𝑘 + 𝑣𝑘𝑐𝑘↑
† 𝑐−𝑘↓

† )

𝑘

|0⟩. (11) 

The coefficients 𝑢𝑘 and 𝑣𝑘 appear in the ratio 𝑢𝑘 𝑣𝑘 = ∆𝑘 (𝜉𝑘 + √𝜉𝑘
2 + ∆𝑘

2)⁄⁄  with the gap function ∆𝑘 and 

𝜉𝑘 = 𝜖𝑘 − 𝜇 where 𝜇 is the chemical potential. For the d-wave paring, we take ∆𝑘= ∆𝑠(cos 𝑘𝑥 − cos 𝑘𝑦). We usually 

first consider the BCS state with the Gutzwiller operator given by 

𝜓𝐺ー𝐵𝐶𝑆 = 𝑃𝑁𝑒
𝑃𝐺𝜓𝐵𝐶𝑆, (12) 

where 𝑃𝑁𝑒
 stands for the operator that extracts the state with 𝑁𝑒 electrons. This wave function was referred to as the 

resonating valence bond state (RVB) by Anderson [98]. 

In our formulation the correlated superconducting wave function is given as 

𝜓𝜆−𝐵𝐶𝑆 = 𝑒−𝜆𝐾𝑃𝐺𝜓𝐵𝐶𝑆. (13) 

In this wave function the operator 𝑃𝑁𝑒
 is not used because of the numerical method to evaluate expectation values, 

while in the Gutzwiller BCS state 𝜓𝐺−𝐵𝐶𝑆, the total number of electrons is fixed. Because we use the auxiliary filed 

method in a Monte Carlo simulation [46,99], we perform the electron-hole transformation for down-spin electrons: 

𝑑𝑘 = 𝑐−𝑘↓
†

, 𝑑𝑘
† = 𝑐−𝑘↓, and the operator for up-spin electrons remains the same [93]. We put 𝑐𝑘 = 𝑐𝑘↑ and 𝑐𝑘

† = 𝑐𝑘↑
†

. 

The electron-pair operator 𝑐𝑘↑
† 𝑐−𝑘↓

†
 is transformed to the mixing operator 𝑐𝑘

†𝑑𝑘. This transformation indicates that 𝑐𝑖 =

𝑐𝑖↑ and 𝑑𝑖 = 𝑐𝑖↓
†

 in the real space representation. In the real space, the d-wave anisotropic pairing order parameters are 

assigned to each bond between the site 𝑖 and its nearest-neighbor sites 𝑖 + �̂� and 𝑖 + 𝑦 where �̂� and 𝑦 denote the unit 

vectors in the �̂� and 𝑦 directions, respectively. We assign the following order parameter in the real space representation: 

∆𝑖,𝑖+�̂�= ∆𝑠,     ∆𝑖,𝑖+�̂�= −∆𝑠. (14) 

3.2.3. 𝑒−𝜆𝐾 and the Renormalization of High-Energy Excitations 

Let us discuss the role of 𝑒−𝜆𝐾 introduced in improved wave functions. It is easily seen that the operator 𝑒−𝜆𝐾 

suppresses the weight of high-energy excitation modes because 𝑒−𝜆𝐾 becomes small for high-energy states. Thus 𝑒−𝜆𝐾 

plays a role like the projection operator that projects out low-lying excitation modes. This means that the role of 𝑒−𝜆𝐾 

is analogous to that of the renormalization group procedure, where the cutoff Λ is reduced to Λ − 𝑑Λ, the states near 
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the Fermi surface are magnified and their contributions increase [100]. The parameter 𝜆 controls contributions from 

high-energy modes, which magnifies the states near the Fermi surface. 

4. Phase Diagram by the Optimization Variational Monte Carlo Method 

4.1. Superconductivity and Antiferromagnetic State 

In this section, we discuss possible phases of the 2D Hubbard model including superconducting and 

antiferromagnetic states when we vary the strength of the Coulomb interaction U. First, we show the result obtained by 

using the BCS-Gutzwiller wave function. The ground-state energy has a minimum at finite Δ𝑠 for the BCS-Gutzwiller 

function with d-wave symmetry in the 2D Hubbard model [35,36]. The SC condensation energy 𝐸𝑐𝑜𝑛𝑑 per site was 

evaluated in the limit of large system size 𝑁 → ∞ (where 𝑁 is the number of sites). We obtained in this limit 

𝐸𝑐𝑜𝑛𝑑 𝑁⁄ ≃ 0.2 meV. (15) 

Here we set 𝑡 = 0.5 eV. We obtained a similar result for the three-band d-p model [19]. This indicates that the SC 

condensation energy per atom is approximately given by 0.2 meV which is of the order of 10−4 eV. In experiments, 

the condensation energy was estimated based on the result of specific heat measurements for YBCO [35,101]. The 

result is 

𝐸𝑐𝑜𝑛𝑑 𝑁𝑎𝑡𝑜𝑚 ≃ 0.17 − 0.26⁄  eV (16) 

per Cu atom. We obtain the similar value of the condensation energy from the data of the critical magnetic field [102]. 

Hence, we have a remarkable agreement between theoretical evaluations and experimental measurements. We can say 

that the characteristic energy scale of cuprate high-temperature superconductors is given by this value. 

We turn to the results obtained by the improved wave function 𝜓𝜆 . We show the antiferromagnetic and 

superconducting order parameters as a function of U/t in Figure 1 where calculations were carried out for the 2D 

Hubbard model on a 10 × 10 lattice with 𝑡′ = 0 and 𝑁𝑒 = 88. The characteristic feature of the 2D Hubbard model 

is that the antiferromagnetic (AF) correlation is strong and the AF state is easily stabilized when U is moderately large. 

We also have the SC phase when U is as large as the bandwidth or larger than it. When 𝑡′ = 0, the AF correlation 

weakens upon carrier doping, and it vanishes when U is very large around U/t ≃ 18 for the hole density x = 0.12. The 

SC phase can exist as a pure d-wave state when U/t is about 18. 

 

Figure 1. Antiferromagnetic and superconducting order parameters as a function of U/t where 𝑡′ = 0 and 𝑁𝑒 = 88 for the 2D 

Hubbard model on a 10 × 10 lattice (figure from [47] with a slight modification). Δ indicates the AF order parameter Δ𝐴𝐹  or the 

SC order parameter Δ𝑠. We impose the periodic boundary condition in one direction and antiperiodic boundary condition in the 

other direction. AF(G) indicates the result obtained by using the Gutzwiller function. The results AF and SC show those for the 

improved wave function 𝜓𝜆. 
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The next nearest-neighbor transfer 𝑡′ plays a significant role concerning the stability of the AF state. In Figure 2, 

we show the AF condensation energy as a function of the hole doping rate x for the 2D Hubbard model on a 10 × 10 

lattice. The AF condensation energy is defined as ∆𝐸𝐴𝐹 = 𝐸(∆𝐴𝐹= 0) − 𝐸(∆𝐴𝐹,opt) where ∆𝐴𝐹  is the AF order 

parameter and ∆𝐴𝐹,opt is its optimized value. In the case of vanishing 𝑡′, ∆𝐸𝐴𝐹 vanishes at x = 0.1 when U is greater 

than 14t (Figure 2a), while ∆𝐸𝐴𝐹 remains finite (positive value) even for large U and large carrier density when 𝑡′ =

−0.2 (Figure 2b). The instability of the AF state for 𝑡′ = 0 is closely related to the kinetic energy of electrons (holes). 

Since the kinetic energy gain in the AF state is suppressed as U increases, the total energy lowering due to the AF 

ordering and kinetic energy gain will get smaller for large U. Then, in order to lower the ground-state energy, the AF 

order will be suppressed to increase the kinetic energy gain. Finally, the AF order disappears when U becomes as large 

as the critical value. This is the mechanism of vanishing AF order in the strongly correlated region. 

  

Figure 2. The AF condensation energy ∆𝐸𝐴𝐹  per site as a function of the doping rate x for several values of U/t (where U/t = 12, 

14 and 18) on a 10 × 10 lattice. We put (a) 𝑡′ = 0 and (b) 𝑡′ = −0.2𝑡 [48]. 

4.2. Phase Diagram 

We consider the SC condensation energy defined by ∆𝐸𝑆𝐶 = 𝐸(∆𝑠= 0) − 𝐸(∆𝑠,opt)  where ∆𝑠,opt  is the 

optimized value of ∆𝑠 to give the lowest ground-state energy. In Figure 3, ∆𝐸𝑆𝐶 and ∆𝐸𝐴𝐹 are shown as a function of 

the doping rate x for U/t = 18 and 𝑡′ = 0 on a 10 × 10 lattice. In the low doping region, there is the AF insulating 

(AFI) phase for 0 ≤ 𝑥 ≲ 0.06. The AFI is an insulating phase because of an instability toward the phase separation 

where the charge susceptibility 𝜒𝑐 becomes negative. 𝜒𝑐 is defined as 

1

𝜒𝑐
=

𝜕2𝐸(𝑁𝑒)

𝜕𝑁𝑒
2 =

𝐸(𝑁𝑒 + 𝛿𝑁𝑒) + 𝐸(𝑁𝑒 − 𝛿𝑁𝑒) − 2𝐸(𝑁𝑒)

(𝛿𝑁𝑒)2
, (17) 

where 𝐸(𝑁𝑒) is the ground-state energy when the number of electrons is 𝑁𝑒. The negative sign of 𝜒𝑐 indicates that 

the ground state is an insulator. The SC condensation energy ∆𝐸𝑆𝐶 is finite for 0.05 ≲ 𝑥 ≲ 0.2. There is a coexistent 

metallic phase of SC and AF when 0.06 ≲ 𝑥 ≲ 0.09. The pure d-wave SC phase is in the range 0.09 ≲ 𝑥 ≲ 0.2. The 

typical energy scale of SC state is given by ∆𝐸𝑆𝐶~0.005𝑡 and ∆𝑠~0.01𝑡. The corresponding AF values are much 

larger than those of SC values. It has been shown that ∆𝐸𝐴𝐹 is reduced when we improve the wave function from 𝜓𝜆 =

𝜓𝜆
(1)

 to 𝜓𝜆
(3)

 [48]. We here mention that the existence of AFI phase would depend on the value of 𝑡′. When 𝑡′ is 

negative, the AFI phase will disappear as |𝑡′| increases. 



High-Temperature Materials 2024, 1, 10004 7 of 16 

 

 

Figure 3. The condensation energy per site as a function of the hole doping rate x for the 2D Hubbard model on a 10 × 10 lattice 

(figure from [48] with a slight modification). The AF and SC condensation energies are shown. We set 𝑡′ = 0 and U/t = 18. AFI 

indicates the AF insulating phase and SC shows the d-wave SC phase. At about 𝑥 ≃ 0.06, the AF state changes from an insulator 

to a metallic state as 𝑥 increases. We have the coexistent state of antiferromagnetism and superconductivity for 0.06 ≲ 𝑥 ≲ 0.09. 

4.3. Kinetic-Energy Driven Superconductivity 

In strongly correlated electron systems, the kinetic energy effect is important in determining the stable ground state. 

The kinetic energy effect in superconductivity has been examined for electronic models [103–112]. We discuss the role 

of the kinetic term in this subsection. For this purpose, we define two contributions to ∆𝐸𝑆𝐶 from the kinetic term and 

the potential term, respectively: 

∆𝐸𝑘𝑖𝑛−𝑠𝑐 = 𝐸𝑘𝑖𝑛(∆𝑠= 0) − 𝐸𝑘𝑖𝑛(∆𝑠= ∆𝑠,opt), (18) 

∆𝐸𝑈−𝑠𝑐 = 𝐸𝑈(∆𝑠= 0) − 𝐸𝑈(∆𝑠= ∆𝑠,opt), (19) 

where 𝐸𝑘𝑖𝑛 and 𝐸𝑈 are expectation values of the kinetic term K and the Coulomb term 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓𝑖 , respectively. From 

the definition we have 

∆𝐸𝑆𝐶 = ∆𝐸𝑘𝑖𝑛−𝑠𝑐 + ∆𝐸𝑈−𝑠𝑐 . (20) 

In the BCS theory, the attractive interaction brings about superconductivity, and thus the interaction term 𝑉 gives 

the SC condensation energy, that is, 𝑉 in the SC state is lower than that in the normal state: 𝛿𝑉 < 0 (the variation of 

𝑉 is negative when the interaction is introduced). 𝑉 will give the positive contribution to Δ𝐸𝑆𝐶  This is also the case 

for weak coupling superconductivity. In fact, for the Gutzwiller-BCS wave function in the moderately correlated region, 

we have 

∆𝐸𝑘𝑖𝑛−𝑠𝑐 < 0, ∆𝐸𝑈−𝑠𝑐 > 0. (21) 

Instead, in the strongly correlated region where U is as large as 18t, we obtain for 𝜓𝜆 as 

∆𝐸𝑘𝑖𝑛−𝑠𝑐 > 0, ∆𝐸𝑈−𝑠𝑐 < 0. (22) 

The kinetic part gives a positive contribution to ∆𝐸𝑆𝐶. We also define 

∆𝐸𝑘𝑖𝑛 = 𝐸𝑘𝑖𝑛(𝜓𝐺) − 𝐸𝑘𝑖𝑛(𝜓𝜆) = 𝐸𝑘𝑖𝑛(𝜆 = 0) − 𝐸𝑘𝑖𝑛(𝜆opt), (23) 

where 𝐸𝑘𝑖𝑛(𝜓𝐺) and 𝐸𝑘𝑖𝑛(𝜓𝜆) are kinetic energies for 𝜓𝐺  and 𝜓𝜆 , respectively. We show ∆𝐸𝑘𝑖𝑛 , ∆𝐸𝑘𝑖𝑛−𝑠𝑐  and 

∆𝐸𝑆𝐶 as well as 𝐸𝑈 (the expectation value of the interaction term) in Figure 4. In Figure 4 we put 𝑥 = 0.12 and 𝑡′ =

0. The Figure 4 shows that ∆𝐸𝑘𝑖𝑛 changes its sign and begins to increase as U increases when 𝑈 ≳ 8𝑡. ∆𝐸𝑘𝑖𝑛−𝑠𝑐 

becomes positive in the strongly correlated region and shows a similar behavior to ∆𝐸𝑘𝑖𝑛. This behavior is consistent 

with the analysis for Bi2Sr2CaCu2O8+d [103]. 
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Figure 4. The kinetic-energy difference ∆𝐸𝑘𝑖𝑛 𝑁⁄ , the Coulomb energy 𝐸𝑈 𝑁⁄ (left axis), the kinetic-energy gain ∆𝐸𝑘𝑖𝑛−𝑠𝑐/𝑁 and 

the SC condensation energy ∆𝐸𝑆𝐶 𝑁⁄  (right axis) as a function of U/t on a 10 × 10 lattice where 𝑁𝑒 = 88 and 𝑡′ = 0 [102]. We 

use the periodic boundary condition in one direction and antiperiodic boundary condition in the other direction. The vertical axis 

on the right side shows the SC condensation energy ∆𝐸𝑆𝐶 𝑁⁄  and the kinetic condensation energy ∆𝐸𝑘𝑖𝑛−𝑠𝑐 𝑁⁄ . 

4.4. Nematic Charge-Ordered State and Superconductivity 

The existence of striped states has been pointed out by many authors in cuprate superconductors and in the 2D 

Hubbard model [43,56–71]. We do not take into account the lattice effect here, although it helps the formation of charge-

ordered state,. The charge and spin modulations are described as 

𝜌𝑖 = 𝜌 cos(𝑸𝑐 ∙ (𝒓𝑖 − 𝒓0)) , 𝑚𝑖 = 𝑚 sin(𝑸𝑠 ∙ (𝒓𝑖 − 𝒓0)), (24) 

where 𝜌 and 𝑚 ≡ ∆𝐴𝐹  are variational parameters for charge and spin modulations, respectively. 𝒓0  indicates the 

position of the domain boundary of spin modulation. For the commensurate AF state, we take 𝑸𝑠 = (𝜋, 𝜋) and 𝜌 = 0. 

The stripe state is represented by the incommensurate wave vector 𝑸𝑠 = (𝜋 ± 2𝜋𝛿, 𝜋)  where 𝛿  stands for the 

incommensurability that is the inverse of the period of the AF order in the x-direction. In this state, two adjacent AF 

magnetic domains are separated by a one-dimensional domain wall in the y-direction. We have a 𝜋-phase shift when 

crossing a domain wall. For the charge modulation, we put 𝑸𝑐 = 2𝑸𝑠 so that the charge modulation period is just half 

of the spin modulation period. 

We consider the region with the doping rate given by 𝑥 ⋍ 1/8. The stripe state is usually most stable in this region. 

We consider, however, the large-U case where the AF order disappears as described above. In this case we have the ground 

state with charge order and without magnetic order for which 𝑚 = ∆𝐴𝐹= 0 and 𝜌 ≠ 0. This state is called the nematic 

state. The calculation was carried out for U/t = 18, 𝑡′ = 0 and 𝛿 = 1/4 (4-lattice charge periodicity) with the electron 

number 𝑁𝑒 = 228 on a 16 × 16 lattice. The charge-ordered nematic state is indeed stabilized for this set of parameters. 

We examine how superconductivity exists in the charge-ordered state. Let us consider the following gap function: 

∆𝑖,𝑖+�̂�= ∆𝑠 ∙ (1 + 𝛼 cos (
1

2
𝜋𝑥 −

𝜋

4
)) , Δ𝑖,𝑖+�̂� = −Δ𝑠 ∙ (1 + 𝛼 cos (

1

2
𝜋𝑥)), (25) 

where the coordinate of site i is 𝒓𝑖 = (𝑥, 𝑦) and 𝛼 is a real parameter. The hole (or electron) rich domains exist at x = 

4, 8, 12 and 16 for 𝛼 > 0 (or 𝛼 < 0). The gap function is spatially oscillating according to the charge modulation in 

this pairing state. In Figure 5 we show the ground-state energy per site 𝐸 𝑁⁄  as a function of ∆𝑠 for the uniform d-

wave state and the oscillating d-wave state. The result shows that the oscillating d-wave pairing state is most stable and 

will be realized. The superconducting state can coexist with inhomogeneous charge order with increased gap function. 

This gives a possibility that superconductivity is enhanced with higher 𝑇𝑐  in cooperation with the inhomogeneous 

nematic charge ordering. 
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Figure 5. The ground-state energy per site as a function of the SC order parameter ∆𝑠 for U/t = 18 and 𝑡′ = 0 at 𝑁𝑒 = 228 on a 

16 × 16 lattice. We used 𝑔 = 0.005 , 𝜆 = 0.055 and 𝜌 = 0.01. We compare three energy expectation values for the wave 

function with uniform d-wave symmetry with 𝜌 = 0 and 0.01, and that with partially oscillating d-wave pairing (𝛼 = −0.1). The 

dotted lines are guide for eyes. 

5. Superconductivity and Strong Correlation 

In this section, we examine the effect of strong correlation on superconductivity. We consider the effect of the 

Gutzwiller operator 𝑃𝐺 on the superconducting correlation function. The BCS wave function 𝜓𝐵𝐶𝑆(Δ𝑠) clearly shows 

the long-range correlation. In Figure 6, we show the SC correlation function 𝐷𝑠𝑐(ℓ) ≡ 〈Δ†(𝑖)Δ(𝑖 + ℓ)〉, as a function 

of the lattice site for 𝑁𝑒 = 88, 𝑈 = 18𝑡 and 𝑡′ = 0 on a 10 × 10 lattice. Here the pair annihilation operator ∆(𝑖) 

at the site 𝑖 is defined by 

∆(𝑖) = ∆𝑥(𝑖) + ∆−𝑥(𝑖) − (∆𝑦(𝑖) + ∆−𝑦(𝑖)), (26) 

where 

∆𝛼(𝑖) =  𝑐𝑖↓𝑐𝑖+�̂�↑ − 𝑐𝑖↑𝑐𝑖+�̂�↓, (27) 

for 𝛼 = 𝑥 and 𝑦. �̂� stands for the unit vector in the 𝛼-th direction. 

Figure 6 shows that the pair correlation function for 𝑈 = 18𝑡 is almost constant when ℓ is large indicating that 

the ground state is superconducting. The values of 𝐷𝑠𝑐(ℓ) for large ℓ are suppressed considerably compared to that 

for the non-interacting BCS wave function. This suppression is due to the strong correlation between electrons. This 

makes it rather hard to confirm the existence of the superconducting phase in numerical calculations of pair correlation 

functions by, for example, quantum Monte Carlo calculations. In Figure 7, we show the SC correlation function 𝐷𝑠𝑐(ℓ) 

of 𝑃𝐺𝜓𝐵𝐶𝑆(Δ𝑠) at the site ℓ = 𝑅𝑚𝑎𝑥 = (5,5) with 𝑖 = (1,1) as a function of 1 − 𝑔 for ∆𝑠= 0.05𝑡 on a 10 × 10 

lattice. 𝑅𝑚𝑎𝑥 is the most distant point from the site 𝑖 = (1,1). Figure 7 indicates that the pair correlation function is 

suppressed by the electron correlation that is now given by the Gutzwiller on-site operator. Thus, we can say that the 

electron correlation has duality. This means that the electron correlation is an origin of attractive interaction between 

electrons and at the same time suppresses pair correlation functions. 

The electron correlation has also an effect on the superconducting order parameter ∆. ∆ is defined by 

∆ =
1

𝑁
∑(〈𝑐𝑖↑

† 𝑐𝑖+𝑥↓
† 〉 − 〈𝑐𝑖↑

† 𝑐𝑖+�̂�↓
† 〉)

𝑖

. (28) 

We show ∆ as a function of 1 − 𝑔 in Figure 8. ∆ exhibits a similar behavior to 𝐷𝑠𝑐(ℓ), that is, ∆ is reduced by 𝑃𝐺 . 
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Figure 6. The pair correlation function 𝐷𝑠𝑐(ℓ) for 𝑁𝑒 = 88, 𝑈 = 18𝑡 and 𝑡′ = 0 on a 10 × 10 lattice where 𝑖 = (1,1) and 

ℓ = (1,1), (1,2), (1,3), (1,4), (1,5), (2,5), (3,5), (4,5) and (5,5). The figure includes 𝐷𝑠𝑐(ℓ) for 𝑈 = 0 (squares), that for the BCS 

wave function 𝜓𝐵𝐶𝑆(Δ𝑠) with ∆𝑠= 0.05𝑡 (open circles), and that for 𝑈 = 18𝑡 (filled circles). 

 

Figure 7. The pair correlation function 𝐷𝑠𝑐(ℓ) for ℓ = 𝑅𝑚𝑎𝑥 = (5,5) of 𝑃𝐺𝜓𝐵𝐶𝑆(Δ𝑠) with ∆𝑠= 0.05𝑡 on a 10 × 10 lattice. The 

parameter 𝑔 is in the range of 0 ≤ 𝑔 ≤ 1 and 1 − 𝑔 = 0 corresponds to the BCS wave function. 

When 𝑔 < 1. Hence the electron correlation also leads to the reduction of the SC gap ∆. The strong electron 

correlation has duality, which means that the electron correlation becomes an origin of attractive interaction of d-wave 

pairing and at the same time, it suppresses SC correlation function and SC gap. One origin of this suppression is certainly 

the renormalization of the effective transfer integral and the effective mass. The heavy effective mass 𝑚∗ 𝑚⁄  reduces 

pair correlation functions and is not favorable for superconductivity as indicated by Equation (1). The exponential factor 

𝑒−𝜆𝐾 could play a role in increasing pair correlation by the kinetic energy effect. 
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Figure 8. The superconducting order parameter ∆ as a function of 1 − 𝑔 for 𝑃𝐺𝜓𝐵𝐶𝑆(Δ𝑠) with ∆𝑠= 0.05𝑡 on a 10 × 10 lattice. 

6. Discussion 

The many-body wave function is important in the study of strongly correlated electron systems. We have 

constructed many-body wave functions starting from the Gutzwiller function to take into account strong correlation 

between electrons. The series 𝜓𝐺 , 𝜓𝜆
(1)

≡ 𝜓𝜆, 𝜓𝜆
(2)

, 𝜓𝜆
(3)

, ⋯ , will approach the exact wave function. 

An instability toward magnetic ordering easily occurs in the two-dimensional Hubbard model. In particular, near 

the half-filled case with a small number of holes, the ground state has inevitably some magnetic or charge orders. Thus, 

we considered the strong correlated region where magnetic correlations and magnetic instabilities are suppressed. 

Thus, we need a method of calculation by which we can evaluate physical properties in the strongly correlated 

region. This was the purpose of the study in this paper. We chose the value U/t = 18 in this paper. Since the extreme 

strong correlation reduces the pair correlation function, it is favorable that we can choose a moderate value of U being 

less than U = 18t. We expect that this value is reduced when we take account of further improved wave functions 𝜓𝜆
(3)

, 

𝜓𝜆
(4)

, ⋯. In fact, the antiferromagnetic correlation is suppressed for the improved wave function 𝜓𝜆
(3)

[48]. We expect 

that this will lead to a superconducting state with larger gap function. 

7. Conclusions 

We have investigated the correlated superconducting state in the ground state of the two-dimensional Hubbard 

model based on the optimization variational Monte Carlo method. First, we discussed that the SC condensation energy 

obtained by numerical calculations is consistent with that estimated from experimental results for high-temperature 

cuprate superconductors. Second, we presented the phase diagram as a function of U based on improved many-body 

wave functions. The superconducting phase exists in the strongly correlated region where U is larger than the bandwidth. 

When 𝑡′ = 0, the AF correlation weakens upon hole doping in the strongly correlated region and the pure d-wave SC 

is realized. Third, we have also shown the phase diagram as a function of the carrier density x, where basically there are 

three phases: antiferromagnetic insulating phase, metallic antiferromagnetic phase and superconducting phase. Fourth, 

then we discussed the kinetic energy effect that would assist the appearance of superconductivity and this effect may 

play an important role in the realization of high-temperature superconductivity. Fifth, we investigated the cooperation 

of charge inhomogeneous order and superconductivity. This indicates the possibility that the superconducting critical 

temperature 𝑇𝑐  will increase due to the coexistence with nematic charge ordering. Lastly, we showed the pair 

correlation function 𝐷𝑠𝑐(ℓ). We discussed the effect of strong electron correlation on pair correlation function and SC 

order parameter. The pair correlation function is suppressed by the electron correlation operator 𝑃𝐺 . Although the 

correlation function 𝐷𝑠𝑐(ℓ) becomes small due to 𝑃𝐺, the long-range order still exists for 𝜓𝜆. 
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