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ABSTRACT: This paper proposes a distributed reinforcement learning method for multi-robot cooperative target search based on 
policy gradient in 3D dynamic environments. The objective is to find all hostile drones which are considered as targets with the 
minimal search time while avoiding obstacles. First, the motion model for unmanned aerial vehicles and obstacles in a dynamic 3D 
environments is presented. Then, a reward function is designed based on environmental feedback and obstacle avoidance. A loss 
function and its gradient are designed based on the expected cumulative reward and its differentiation. Next, the expected 
cumulative reward is optimized by a reinforcement learning algorithm that makes the loss function update in the direction of the 
gradient. When the variance of the expected cumulative reward is lower than a specified threshold, the unmanned aerial vehicle 
obtains the optimal search policy. Finally, simulation results demonstrate that the proposed method effectively enables unmanned 
aerial vehicles to identify all targets in the dynamic 3D airspace while avoiding obstacles. 

Keywords: Multi-agent system; Reinforcement learning; Cooperative target search; Dynamic obstacles avoidance 
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1. Introduction 

With the advancements of unmanned aerial vehicle (UAV) technology and materials science, the application of 
more affordable and compact UAVs has received significant attention. In the military sector, UAV with specialised 
instrumentation is able to rapidly and accurately execute missions of surveillance, search, rescue and delivery. Besides, 
for the non-military field, UAV shows great potential for environmental monitoring, topographic exploration, and 
rescue due to their flexibility [1–3]. While on the other hand, UAV can also pose a serious threat to public safety [4,5]. 
In designated no-fly zones, such as airports and military areas, UAVs may pose an extremely serious threat to national 
security. In order to deal with the security threats caused by UAVs, research on civil anti-UAV systems has received 
widespread attention in recent decades. Typically, an anti-drone system comprises ground monitoring and jamming 
equipment. These systems intercept UAV targets through real-time ground detection and coordinated ground-based 
jamming. However, in obscured cities, communications from ground-based equipment can be severely compromised, 
ultimately making it difficult for anti-UAS to accurately acquire target information [6]. In ref. [7], a wireless sensor 
network is proposed by using UAVs as nodes for information acquisition and sending, the uploaded data is processed 
by a centralized cloud server. However, most of the researches proved that decentralized decision-making outperforms 
centralized ones, this paper mainly focuses on the decentralized multi-UAV systems. 

UAV interception methods are mainly divided into communication jamming and capture. Most research on UAV 
communication jamming is focused on electromagnetic interference. Such as in ref. [8], a UAV jamming method based 
on GPS signal spoofing policy is proposed. It misleads UAVs to land in the capture area by sending them fake GPS 
signals in real time without triggering their fault detectors. This communication jamming based interception method is 
extremely efficient in open environments, and superimposing jamming signals can further improve target capture rates. 
However, in cities where electromagnetic signals are dense and heavily obscured, interfering signals will be severely 
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affected, and high-power interfering signals will affect the normal operation of the city. In ref. [9], an anti-drone system that 
combines audio, video and radio frequency technologies is proposed to detect, localize and radio frequency jamming jam 
drones, which avoids the impact of high-powered equipment on cities, and the detection and jamming efficiency of targets 
has been greatly improved. However, this method still unavoidably relies on the support of ground-based equipment. 

The interception and capture is a more straightforward method than employing communication jamming 
techniques. In ref. [10], an interception method is designed based on depth image localization, which detects the target 
situation in an area by means of a depth image acquired by a stereo camera. Similar, ref. [11] proposes a computer 
vision based stationary target localisation method which inputs the segmented processed depth images into a Deep Q-
Network to acquire the UAV’s movement strategy. Note that the image technology enables UAVs to obtain more 
detailed and accurate information about the environment, but the window of view limitation of the on-board camera 
needs to be solved when intercepting targets in high-latitude continuous space. 

The interception method based on image detection is able to identify and intercept the target efficiently by changing 
the pose and speed of the UAV. However, the time lag problem makes it difficult for UAVs to track moving targets in 
real time. In order to track and intercept moving targets in real time, ref. [12] investigates an airborne interception 
method combined with a multi-agent system. It locates and tracks the target through on-board sensors and then interferes 
with the target through radio technology. Ref. [13] proposes an anti-drone method for drone surveillance based on 
acoustic wave technology and infrared thermography. It locates and tracks targets in the area through detection 
techniques such as electromagnetic waves, acoustic waves and thermal imaging. The method improves the search 
efficiency of UAVs by incorporating multiple techniques. However, in a dynamically changing environment, real-time 
analysis and guidance for UAV searches require significant computational power, which can potentially affect the 
stability of the UAV’s search strategy. In order to reduce the complexity of the algorithm, a decentralized reinforcement 
learning search method is proposed in ref. [14] that the effects of unknown environments is analyzed through a partially 
observable Markov decision process. In ref. [15] a cooperative search method is proposed based on local information 
extraction. It processes the 2D grid map information within the sensor coverage by a convolutional neural network, and 
then the information is analyzed and guided to UAV search by an improved Q-learning. Ref. [16] proposes a cross-
domain monitoring method for tracking targets based on asymmetric self-play and curriculum learning technique. The 
method improves the accuracy of global information on a wide range of environments by collaboratively sensing and 
capturing complex environmental information by air-ground heterogeneous robots. But it still tends to convert a 3D 
environment into 2D space. 

To the best of the authors’ knowledge, existing research on UAV interception predominantly focuses on signal-
based target localization and jamming. However, there are comparatively fewer studies addressing target interception 
in signal-constrained regions. Especially in dynamic 3D environments with large scale, high dimensionality and more 
uncertainties, UAV movements need to be derived by analyzing environmental information in real time. Capturing a 
target as it moves through the environment also requires analyzing and learning how the target moves. Therefore, 
searching for and capturing a target in an unknown dynamic environment faces many challenges, which is the starting 
point of our work in this paper. 

The main contributions of this paper are as follows: A distributed reinforcement learning target search method is 
proposed to enable the searching UAVs to detect all the targets while avoiding moving obstacles in a dynamically 3D 
environment. First, the target search problem formulation based on reinforcement learning method of an anti-UAV 
system is extended to continuous 3D dynamic environments. Then a reinforcement learning algorithm is proposed based 
on a gradient ascent method, the search decision of a S-UAV is making by optimizing the expected reward loss function. 
Different from the existing methods on obstacle avoidance policy, this paper divides the obstacle avoidance problem 
into obstacle avoidance and collision avoidance. Finally, simulations are executed to prove that the proposed method 
can significantly enhances the capability of UAVs in target search operations, surveillance, and exploration missions in 
3D complex environments. 

The paper is structured as follows. Section 2 describes the problem formulation. Section 3 proposes the distributed 
multi-agent search method based on policy gradient. Section 4 analyzes the experimental results of the policy gradient 
method. Section 5 gives the conclusions and future work. 

2. Problem Formulation 

In this section, the target search problem formulation based on reinforcement learning method of an anti-UAV 
system is described in detailed. 
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Supposing that there are  searching UAVs (S-UAV) and  randomly distributed targets in a 3D dynamic 

environment, which contains dynamic and static obstacles. The S-UAVs can sense the environment and targets through 
its on-board radar. The target is called detected if it is within the radar’s detection range. Assuming that the number of the 
targets is known, the goal of the S-UAV is to explore the environment, and ultimately find all the targets in the shortest 
time while avoiding obstacles. The S-UAV target search scenario in 3D dynamic environments is shown in Figure 1. 

 

Figure 1. Multi-agent cooperative search system scenarios. 

Without considering communication constraints, the UAV understands the environment by communicating with 
other UAVs in real time, and makes the best decisions based on the information. In most of the existing research, the 
motion of the UAV in 2D space is mainly affected by the yaw angle . The velocity components of the UAV in the 
X-axis and Y-axis are changed by adjusting . However, in 3D space, the motion of UAV in Z-axis needs to be 
achieved by the azimuth angle . as shown in Figure 2. 

 

Figure 2. Motion modeling of UAV in 2D space and 3D space. 
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In this paper, the exploration of the i-th S-UAV can be described by a Partially Observable Markov Decision 
Process (POMDP), which consists of a tuple as follows: 

 (1)

where  denotes the action space with q actions.  is the reward function that denotes the immediate reward 

obtained by the S-UAV at time step t.  denotes the state space, which is shown as expressed: 

 
(2)

where  denotes the i-th S-UAV position,  denotes the number of target found, and 

 denotes the action selected,  denotes the position obstacles, which is shown as follows: 

 
(3)

and  denotes the observation space. It contains the position, yaw and azimuth of the i-th S-UAV in 

3D space, as shown in Figure 3. 

 

Figure 3. Agent environment interaction. 

The observations of the i-th S-UAV are expressed as: 

 
(4)

where , ,  denote the components of velocity  in the X, Y, and Z-axis, respectively, they are expressed as: 
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where  is the discount factor, and T is the maximum time step.  denotes the return obtained by the i-th S-UAV 

in each time step from reward function .  denotes the trajectory that contains actions, states and immediate rewards 

collected during iterations, which is shown as follows: 

 
(7)

In reinforcement learning structure, the action  is decided by the policy  and exploration rate . 
 denotes the weights and biases of the network.  denotes the probability of S-UAV choosing action  in 

state , which is affected by the parameter .  denotes the probability that the S-UAV executes action . It 
decays with time steps, which suggests that the S-UAV will execute the highest probability action with 1 − . The 
decay process of  indicates that the S-UAV is more inclined to utilize experience as time goes by. 

According to ref. [17], when k = 1, the S-UAV searches for targets in the environment according to an initial policy 

, then generates an initial trajectory . Next, the cumulative reward  is obtained and deposited into the 

experience pool for updating the policy  at k = 2. The interaction between the S-UAV and the environment is shown 

in Figure 4. 

 

Figure 4. Agent environment interaction. 

Firstly, the policy network will output the probability distribution of actions based on the state  of the i-th S-
UAV. Then, the actions are selected based on and constitute the . Secondly, actions at each time step 
constitute . Then Second, new policy network parameters are calculated based on the cumulative rewards. Finally, 
S-UAV will obtain a new  based on the new  and start a new cycle. 

The goal of search problem is to maximize expected rewards as follows: 

 
(8)

where  denotes the probability that the S-UAV selects the trajectory  under policy . It is shown as follows: 

 
(9)

where  is the state transfer probability of the environment, which represents the probability of transferring 
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3. Reinforcement Learning Method for Targets Search 

In this section, a reinforcement learning algorithm is proposed based on a gradient ascent method, the search 
decision of a S-UAV is making by optimizing the expected reward loss function. 

3.1. Reward Function 

Reward function in a reinforcement learning target search method is a critical component that guides the behavior 
of the S-UAVs toward achieving their objectives. In this paper, the following reward function is designed.  

3.1.1. Targeted Discovery Reward 

Finding the target is the core of the search task, which is defined as follows: 

 

(10)

where 0r  is the value for finding one target, and 1r  is the value for finding all targets. Also, 01r r
 makes the S-

UAV search for all targets. 

3.1.2. Exploration Rewards 

In order to encourage a S-UAV to explore unknown regions while avoiding repetitive exploration of known regions. 
The search reward function is defined as: 

)1log(  pS nr
 

(11)

where  denotes the number of times explored. 

3.1.3. Flying Cost 

The cost of obstacle avoidance and the cost of collisions that occur after an obstacle avoidance failure, which is 
defined as: 

 (12)

where ,  and  are the cost of movement, obstacle avoidance and collision. ,  determines the occurrence 

of obstacle avoidance and collision, as follows: 

  
(13)

where d denotes the distance between the S-UAV and the obstacle,  denotes the detection range. 
When  = 1, the action of i-th S-UAV will be changed as follows: 

 (14)

it indicates that the i-th S-UAV will fly in the direction opposite to . In addition, the constraint  is hard to 
ensure S-UAV avoids the dynamic obstacles. Therefore,  is designed as follows: 

 
(15)
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(16)

where  is the value of crossing the border. 

3.1.5. Search Cost 

In order to avoid the S-UAV from falling into a loop, the cost of time step limit is defined as: 

 
(17)

where  is the value of searching,  determines whether the S-UAV exceeds the time limit as follows: 

 
(18)

In the algorithm, the reward will affect the policy update of the S-UAV, and for ease of computation,  

is integers. Therefore, the reward obtained by each S-UAV at time step t is defined as follows: 

 (19)

where  is the weighting coefficients, and . 

3.2. Policy Gradient Ascent 

The goal of S-UAV is to find all targets in the shortest time and at the smallest cost, which is described as 
maximizing expected reward in MDP [18]. 

The policy is updated following the exploration of the S-UAV. In the first iteration, the observations of S-UAV 
are input into the initial actor network to obtain an initial policy . Then, the S-UAV selects a series of actions to 

explore the environment and generates gradients to update the actor network and eventually the policy. Generally, the 
policy is updated by optimizing the loss function, which is shown as follows: 

 
(20)

For convenience of calculation,  in the expected reward is taken logarithmically and then multiplied with 
the cumulative reward to define the loss function, therefore the gradient is expressed as a differential of the expected 
reward as follows: 

 
(21)

According to the gradient ascent method, in order to keep the cumulative reward  approaching the desired 

reward , the parameter θ is updated in the direction of maximizing the expected reward [19] as follows: 

 
(22)
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Algorithm 1 Collaborative target search algorithm based on policy gradient 

Input: Number of targets , number of S-UAV , position of i-th S-UAV , position of obstacles , 

learning rate , number of epochs , trajectory , and experience pool P. 

Output: Return , number of targets found  

1: Initialize parameter , experience pool P and observation O. 

2: For k = 1 to  

3:  Reset the , , . 

4:  Generate policy  with parameter . 
5:  For t = 0 to T 
6:    Input observation O. 
7:    Generate action  with policy . 
8:    Update observation O. 
9:    Calculate the immediate reward . 
10:   Deposit  and  into the experience pool P. 
11:  end for 
12:  Generate the trajectory  from experience pool P. 

13:  Calculate the cumulative reward . 

14:  Calculate the expected reward  

and gradient  

15:  Update parameter  by . 

16: end for 

17: Generate  and . 

4. Simulation Results 

In order to verify the effectiveness of the algorithm, the cooperative search of multiple UAVs in a dynamic 3D 
environment is simulated by the following experimental environment: The operating system is Windows 11, the 
processor is AMD Ryzen 5600, the graphic processor is NVIDIA RTX 3060, the RAM capacity is 32 GB, and the 
programming language is Python 3.8. The specific parameters of the simulation experiments as shown in Table 1. 

Table 1. Example of 3D dynamic space simulation. 

Parameters  Value Parameters  Value Parameters  Value 

space shape 14 × 14 × 3  −1  0.4 

 4  −10  0.2 

 3  −100  0.1 

 3  −100  0.2 

 106  −10  0.1 

 100  0.2  0.5 

 103  0.2  0.99 

where the reward ri (i = 2, 3, 4, 5, 6) is negative, which is because the algorithm is designed to maximize the cumulative 
reward rt. During exploration, UAV will adjust the probability of selecting behaviours whose reward is negative.  
and  denote the UAV velocity value and the threshold required for its obstacle avoidance, respectively. 

In addition, the initial positions of the S-UAV, obstacles and targets, and the action space of the S-UAV are shown 
in Table 2. 
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Table 2. Position information and S-UAV motion space. 

Parameters Value Parameters Value Parameters Value 

 (1.0, 1.0, 2.0) 
 

(6.0, 7.0, 2.5)  [ /2, /2] 

 (4.5, 1.0, 2.0)  (9.0, 12.0, 1.5)  [0, /2] 

 (8.0, 1.0, 2.0)  (2.0, 13, 1.5)  [ , /2] 

 (11.5, 1.0, 2.0)  (7.0, 13 2.0)  [ /2, 0] 

 (3.0, 2.0, 1.5)  (12.0, 13, 1.5)  [ /2, ] 

In the simulation, the algorithm evaluates the average cumulative reward and the average number of targets found 
per 100 epochs. The cumulative reward and the number of target finds generated by the S-UAV exploring the 3D 
environment are shown in Figure 5. 

 

Figure 5. Motion trajectories of S-UAV in 3D space at different time steps.  

where Figure 5a,b show the convergence of the reward curve and the target discovery curve, respectively. Since the scale 
of the X-axis represents the average of 100 epochs, the number of target discoveries on the way is a floating point number. 

Figure 6 shows the trend of S-UAV in the loss curve. Since , the curve actually responds to the 

process of change in the cumulative reward . 

 

Figure 6. Loss curve. 
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In order to demonstrate the target search process in a 3D dynamic environment, the algorithm visualises the process 
as shown in Figure 7. Figure 7a shows the beginning of the search, Figure 7b–d indicate that the S-UAV avoids the 
obstacle , and Figure 7e indicates the end of the exploration after the S-UAVs finds all the targets. 

 

Figure 7. Trajectories of S-UAV in 3D space at different time steps. 

Some existing target search methods mainly focus on the 2D plane situation, such as the method in [14], is unable 
to applied in 3D environment and hence cannot compare with the proposed method in this paper due to its lower 
dimensional space and information. Besides, the 3D space-based obstacle avoidance policy ignores the complexity of 
the algorithm. In order to validate the proposed 3D spatial target search method and obstacle avoidance method, Figure 
8 shows the exploration process of the S-UAVs when the algorithm does not construct the reward functions corresponding 
to obstacle avoidance and collision respectively. From the results, we can see that when the time step is 80, we have 

, but the S-UAV doesn’t obtain the corresponding reward feedback, as a result, the collision occurs. 

 

Figure 8. Trajectories of 3D space without constructing an obstacle avoidance reward function. 
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5. Conclusions 

In this paper, a target search strategy based on distributed reinforcement learning method in a dynamic 3D 
environment is proposed. First, a motion model that is suitable for 3D space under reinforcement learning structure is 

proposed, then a reward functions is designed, which considers the dynamic obstacles avoidance and the UAVs collision 
avoidance. Besides, the network parameters are updated by the gradient ascent method, and the optimal search policy 
for S-UAV is finally obtained. Finally, simulation results demonstrate that the proposed method is effective in target 
search under 3D dynamic environments. Note that the algorithm is difficult to converge when the space shape increases. 
How to search stationary targets in a large range of 3D space and how to improve the tracking efficiency of moving 
targets are the focus of our future work. 
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