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ABSTRACT: Climate change is leading to rapid environmental changes, including fluctuating precipitation and water levels, which 
raises the risk of flooding in coastal and riverine locations around the United States. This study focuses on Sacramento, California, 
a city significantly affected by these changes and recent severe flooding disasters. The ultimate goal is to understand the climate 
dynamics and create a more robust model to alert Sacramento and other communities to possible flooding and better prepare them 
for future climatic uncertainty. In this research, four classification machine learning models—Support Vector Machine (SVM), 
Random Forest (RF), Artificial Neural Network (ANN), and Long Short-Term Memory (LSTM)—are examined for their capacity 
to predict the occurrence of floods using historical precipitation temperature and soil moisture data. Our results demonstrate that 
the LSTM model, with an accuracy of 89.99%, may provide better reliable flood predictions, possibly due to its ability to process 
complicated temporal data. SVM, RF, and ANN showed accuracies of 81.25%, 83.75%, and 85%, respectively. The study explores 
the correlation between increasing precipitation incidents and severe climate variations, such as the El Niño and La Niña cycles, 
which could have increased flooding risks. Significant rainfall peaks occurred in 1998 and 2007, indicating that external 
atmospheric circumstances might have considerably impacted local weather patterns. While LSTM models show potential, there 
remains room to improve their accuracy and adaptability in extreme flood scenarios. Given these findings, future research could 
combine multiple environmental data sources and hybrid modeling approaches to enhance predictions. 
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1. Introduction 

The precipitation abnormality due to climate change has affected the rise of sea levels around the coastal areas. 
The main reasons behind the flooding in coastal areas are sea level rise, land subsidence, and increased urbanization 
[1]. In the twentieth century, the sea level has risen by 1.8 mm/year, and in a few decades, it has risen to 1.8 mm/year 
[2]. According to the National Oceanic and Atmospheric Administration, the sea level may rise approximately 254–304 
mm in coastal areas of the United States (U.S.) by 2050, approximately the same as from 1920 to 2020 [3]. The increase 
in temperature due to global warming causes the warming of oceans and extreme rainfall events, causing floods around 
the coastal area. In addition, flooding in coastal areas results from land subsidence caused by groundwater pumping, oil 
and gas extraction, and an increase in impervious surfaces due to urbanization [4]. As global temperatures rise by 2 °C, 
the intensity of floods is predicted to increase considerably, potentially destroying places at a rate four to five times 
greater at 4 °C compared to 1.5 °C [5]. According to the IPCC Fifth Assessment Report (AR5) published in 2014, 20% 
of the population around coastal areas will be exposed to 100 coastal floods when the global mean sea level rises by 
0.15 m [6]. The exposed population will double when the sea level rises by 0.75 m and triple when the sea level rises 
by 1.4 m, even when there is no change in the population of the coastal areas [6]. Consequently, understanding the 
environmental connections is essential to minimizing the impact of these changes and effectively controlling flood risks. 

The United States coastal regions have some of the major cities in California, which are essential metropolises and 
central hubs for the country’s foreign trade. Due to the rise of sea levels and their impact on marshy terrain, California 
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has recently had to deal with the issue of urban flooding and coastal danger [7]. Researchers estimate that by the year 
2100, the average sea level will have risen by 1 to 1.4 m due to ongoing linear trends in global warming, based on 
forecasts of medium to medium-high emission scenarios [8]. The Mediterranean climate of California, which sees much 
precipitation in the winter, is another factor in the state’s history of floods [9]. In recent years, California has seen a rise 
in the frequency and severity of flooding. California has experienced floods due to severe storms and heavy rain, 
seriously damaging the state’s infrastructure and property. On 9 December 2022, there was a flood in the airport region, 
and research suggests that 90% of California’s coastal airports are at risk owing to continual, worsening flood events 
[10]. Recent floods include floods on 9 January 2023, caused by an atmospheric river, and an extensive flood in 
Sacramento County on 31 December 2022 [9,11]. Given these challenges, alarming flood prediction systems are crucial 
for reducing possible damage in Sacramento, California. Improving flood prediction is critical in the Sacramento region, 
where its flat terrain and breaking levees enhance flood risk, requiring urgent state and municipal measures to strengthen 
defenses and protect against the growing impacts of climate change-induced floods [12]. 

The flood forecast makes the ability to protect oneself, one’s property, and one’s community from potential harm 
and disturbance possible, which is crucial for individuals, businesses, and government authorities [13]. It is the 
framework for developing an early warning system to lessen the potential severity of the flood. The warning system 
makes establishing an emergency response plan and activating safe shelters across the community possible [14]. 
Predictions of flooding are crucial for managing water resources. Water managers can release water from reservoirs in 
a controlled manner by giving a head up, lowering the possibility of a dam failure and floods downstream [15]. To 
minimize the effects on the communities and the state’s economy, flood prediction is essential for safeguarding people, 
their possessions, and the environment [16]. Therefore, the significance of precise and timely flood predictions is 
expected to increase due to increased heavy rainfall and coastal area flooding caused by climate change. 

Machine learning algorithms can be beneficial in flood prediction by delivering precise and timely flood risk 
estimates. In recent years, machine learning models have significantly increased, and they continue to be modified and 
updated to predict floods, providing the basis for developing early warning systems [17]. These models do extensive 
historical and real-time data analyses on various flood-influencing variables and forecast future flood episodes [18]. 
The ability of machine learning models to process enormous volumes of complex data is the main benefit of employing 
them to predict floods. Understanding the relationships among environmental characteristics such as temperature, 
rainfall, and sea level rise is crucial to minimizing the flooding effects on communities and improving prediction 
accuracy [19]. Several parameters, such as precipitation, temperature, soil moisture, and wind velocity, are critical for 
understanding and predicting flood events because they directly influence the hydrological processes within a watershed 
[20]. Conversely, other essential factors such as land topography, changes in land usage, and changes in land cover do 
not undergo considerable changes during short periods since significant changes in topography usually take several 
years to appear [21]. Therefore, it is necessary to understand the dynamic relationship between parameters like 
temperature, precipitation, and soil moisture to develop an early warning system that can predict the occurrence of 
floods as they offer timely, valuable data for flood prediction models [22]. 

Numerous research investigations have highlighted the need for and significance of developing “smart” flood 
forecasting models in response to some of these upcoming issues regarding prevention, adaptation, and mitigation. For 
instance, Fahad et al. (2022) created a framework to assist in decision-making when assessing whether the chosen 
method is appropriate for a portion of the coastal region that experiences the strongest storms [23]. Similarly, Nazari et 
al. (2022) investigated treatment facility concerns brought on by exceptionally severe floods, which highlights the need 
for models to be incorporated in forecasting flood frequency and intensity [24]. These papers highlight the current flood 
prediction techniques’ more severe and extensive shortcomings. Recent advancements in flood forecasting have 
demonstrated the effective integration of machine learning techniques with hydrological models. For instance, Wang et 
al. (2023) recently presented a stable and understandable flood forecasting model by combining multiple linear 
regression with a multi-head attention mechanism, which improved the model’s interpretability and prediction 
performance [25]. In the Lower Yellow River Basin, Wang et al. (2023) conducted a comparable analysis comparing 
the flood-predicting capabilities of LSTM and RNN at the HuaYuankou and LouDe stations [26]. To capture intricate 
hydrological patterns, the results may demonstrate that the LSTM model performs better than the RNN [26]. 
Additionally, the literature indicates that Wang et al. (2021) have significantly improved flood forecasting performance 
using spatially distributed velocity fields based on geomorphic unit hydrographs [27]. Wang et al. (2024) have presented 
a novel method for predicting flood flow that integrates spatiotemporal data through a two-dimensional hidden layer 
structure, showing great promise for improving predictive capabilities [28]. These recent studies provide worthy insights 
that could be useful in developing better models that provide more accurate flood forecasts. These new studies offer 
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valuable insights that may help design better models that produce more accurate flood forecasts. The models used to 
anticipate floods are typically built on the foundation of machine learning techniques. Nevertheless, there are several 
drawbacks. Lawal et al. (2021) used logistic regression, decision trees, and SVM to address flood forecasting challenges. 
Still, they were inaccurate because they could not address time sequence and non-linear issues [29]. However, Sarkar 
et al. (2024) have shown that while decision trees and random forests perform satisfactorily in estimating floods driven 
by rainfall, they do not perform better in other locations with damper weather patterns, such as Sacramento [30]. This 
research will use the Long Short-Term Memory (LSTM) model to recognize its effectiveness. It can recognize long-
term relationships in historical climate data and is consequently more accurate at predicting floods in areas with 
unpredictable weather. 

Our research is motivated by the need to develop a reliable classification model for predicting flood occurrence 
using machine learning techniques, which can serve as an early warning for flood disasters. This research study aims to 
analyze the historical interaction of climate dynamics with flood events in Sacramento, California, by collecting and 
processing historical precipitation and temperature data and identifying significant flood events during the study period. 
Additionally, our research aims to develop and compare four machine learning models—Support Vector Machine 
(SVM), Random Forest (RF), Artificial Neural Network (ANN), and Long Short-Term Memory (LSTM) which are 
used for flood prediction model for Sacramento, California. The performance of these models is compared using metrics 
such as accuracy, Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). This study also assesses the 
implications of employing machine learning models for flood prediction in the context of climate change. 

2. Site Description and Data 

2.1. Study Area 

The study focuses on predicting floods in the Sacramento area. The particular study area is the 
downstream area of the watershed delineated at Station ID 11425500. The flooded areas downstream of this 
location are Laguna, Franklin, Thornton, and Sheldon. The location of the gauge station is Verona, with a latitude of 
38.77 and a longitude of −121.598. The watershed area covers approximately 64,796 km2. While there are multiple 
precipitation gauge stations, we will focus on station ID 390135121261001 located in Wheatland, Yuba County. This 
station provides the necessary 11,680 data points collected at daily intervals for our machine learning models. Its 
coordinates are latitude 39.02 and longitude −121.43. Figure 1 shows the location map of the watershed considered. 

 

Figure 1. (a) Map of the United States; (b) Map of California with highlighted watershed area; (c) Detailed map of the Sacramento 
River watershed area. 

The Sacramento River has a long history of flooding, with notable flood events recorded in 1986, 1995, 1997, 2006, 
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and 2017 [7]. The Sacramento Area Flood Control Agency identifies Sacramento as the nation’s greatest metropolitan 
flood risk. The flood in 1986 in Sacramento was due to the 10 inches of rainfall in 11 days [7]. The flood in 2006 was 
also due to the huge New Year’s Eve Storm, which lasted until the early week of 2006. The next catastrophic flood was 
recorded on 3 January 2017 and lasted till 24 January 2017; due to the recent flood news and its catastrophic historical 
events, the site was chosen to build the model that can be useful in predicting floods [10]. 

2.2. Data Sources 

The ML models in this study utilized datasets about the study area, including boundary and rainfall data, as input 
parameters. The data span from 1990 to 2023 AD. Table 1 enumerates the various data sources employed. Regarding 
data sources, TerraClimate provides high-resolution precipitation data, which is critical for thorough flood modeling in 
Sacramento. NCEI maintains substantial long-term temperature records, which are critical for understanding 
temperature trends and their impact on flood dynamics. Streamstat provides high-quality hydrological data for 
establishing watershed boundaries and studying the factors influencing flood risk areas. The ERA5-Land dataset 
provides high-resolution hourly soil moisture data, critical for simulating the antecedent conditions that determine flood 
risk. These extensive datasets guarantee the accuracy and reliability of our flood prediction models. 

Table 1. Sources of Study Area Data. 

Data Sources 
Precipitation TerraClimate from Climate Engine (https://www.climateengine.org/ (accessed on 1 March 2024)) 

Temperature 
National Centers for Environmental Information (https://www.ncei.noaa.gov/cdo-web/ (accessed on 1 
March 2024)) 

Boundary 
Shapefile 

National Centers for Environmental Information (https://www.ncei.noaa.gov/cdo-web/ (accessed on 1 
March 2024)) 

Soil Moisture ECMWF-ERA-5 (ERA5-Land|ECMWF (accessed on 1 May 2024)) 

3. Methodology 

The study involves extracting data influencing flow values and using it to train and test various machine-learning 
models. The accuracy of these models is compared to determine the most effective one for predicting floods, which can 
be instrumental in creating an emergency response plan. The relevant data was collected and utilized to create the 
machine-learning models. The dataset was split into training and testing subsets to evaluate the models’ performance. 
Various evaluation metrics were applied to assess each model’s effectiveness. Finally, the model with the highest 
accuracy was selected as the flood prediction model. The comparison of monthly rainfall data with a 12-month moving 
average was used in the study in addition to the flood prediction model, and it effectively illustrates the long-term trends 
and patterns in the rainfall data. Figure 2 shows the methodology flowchart. 

 

Figure 2. Diagrammatic Representation of Research Methodology. 
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3.1. Data Acquisition and Preprocessing 

The daily rainfall records spanning thirty-two years (1 January 1990 to 31 December 2022) for Sacramento County, 
California, were obtained from Climate Engine, a web application powered by Google Earth Engine. This dataset 
consists of 11,680 data points collected at daily intervals. Prior to data preparation, the collected data was analyzed. 
Measures were taken during preprocessing to improve computation speed and accuracy. To simplify the dataset, 
monthly rainfall totals were first calculated. Calendar mean values were used to remedy the missing data points. Annual 
precipitation totals were also calculated to provide a more complete picture. The dataset was then divided into two 
subsets: training and testing. The train test split model selection approach assigned 80% of the data for model training 
and 20% for testing. The testing data will help us to understand the performance of the model. The test data input is 
precipitation, soil moisture, and temperature, which will predict the flow. The model was iterated over training and testing 
using 5-fold cross-validation techniques to ensure it generated well in new, unseen data while preventing overfitting. 

3.2. Machine Learning Model Design 

The study utilized a web-based interactive Jupyter Notebook environment to create a machine-learning model for flood 
prediction. The decision was motivated by its strong performance with machine learning and data analysis and its fast 
translation of scripts for real-time execution. It offers a dynamic interface appropriate for large-scale numerical and analytical 
processes [31]. Preparing the data was the first step, and then the model was tested to see how accurate it was predicted. 

The average monthly rainfall is used as a threshold indicator in this baseline. Unlike the study by Lawal et al. in 
2021, the model predicts no floods for that year if the monthly rainfall falls short of this average [29]. On the other hand, 
exceeding this threshold suggests a greater likelihood of flooding, a conclusion supported by our research and the 
recommendations of Lawal et al. [29]. A “Flood” characteristic was added to our dataset to improve data analysis. This 
attribute classified monthly rainfall numbers as above or below the average, with ‘YES’ (1) denoting more rainfall and 
‘NO’ (0) lower. This approach is similar to the one used in the [30–33] studies, where the monthly, seasonal, and yearly 
rainfall measures are used as a baseline for predicting floods. 

Moreover, the study rigorously investigated the effectiveness of four simple machine-learning techniques to 
enhance e the accuracy of flood predictions. The selected underscored the model’s practicality in risk management and 
disaster planning techniques and demonstrated promising potential for predicting future flood disasters, thereby 
emphasizing the real-world significance of this research. 

3.3. Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning model that can be applied to classification and regression 
problems. Developed in the 1960s by Russian mathematician Vapnik, SVM identifies the optimal dividing line, known 
as the maximum-margin hyperplane, between classes in a dataset [34]. It seeks to increase the margin between the 
dataset’s classes using the widest separator available [35]. To accommodate non-linear data, SVM employs a kernel 
function that projects the input data into a space where a linear separator is possible [36]. This trait is beneficial when 
working with high-dimensional data or when there are fewer observations than features. SVM’s efficiency originates 
from using support vectors, which are data points closest to the decision focus and significantly decrease the determining 
load [31]. This research focuses on the SVM’s Support Vector Classification (SVC) part, which categorizes data using 
numerous strategies such as one-vs-one and one-vs-all. Our study uses the all-vs-all technique because of its robustness 
in binary classification across several classes. Previous research has shown that classification accuracy gains from well-
separated classes. SVC performs in scenarios with complex feature connections, making it an effective tool for 
bioinformatics, image recognition, and text categorization applications. The fundamental goal of SVC in this study is 
to accurately separate case construct situations and a predictive model based on the contrasts drawn between these cases. 
The schematic diagram of the SVM is shown below in Figure 3. 
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Figure 3. The schematic diagram of the Support Vector Mechanics. 

The simple mathematical formula of the SVM model is represented in Equation (1) [37]. 

SVM (C, γ, kernel) = arg max C, γ {Accuracy (SVC (C, γ, kernel))} (1)

Here C is the regularization parameter, γ is the kernel coefficient and kernel are the kernel type to be used in the 
algorithm. 

3.4. Random Forest 

The Random Forest approach is a composite method that combines many decision trees to improve the durability 
and precision of prediction models [38]. The present research uses it for classification and develops an aggregate model 
by training individual trees on different data subsets, using random feature subsets at every division. This technique 
reduces overfitting by averaging differences among trees. Figure 4 illustrates the schematic diagram of the Random 
Forest model. 

 

Figure 4. Schematic diagram of the Random Forest model. 

Due to our selection of hyperparameters, the Random Forest model in our study is trained with a particular 
configuration of a hundred trees (n_estimators = 100), improving control over model complexity and ensuring an ideal 
balance between bias and variance. In the study, T is the set of decision trees, and t is a decision tree in T. Its performance 
is measured by comparing these predictions to the actual test labels y, resulting in a score for accuracy given as a 
percentage. Our research employed the Random Forest Classifier from the Sklearn library. In the model, the color 
circles highlight the nodes involved in the decision route. In Equation (2), y represents the final prediction for given 
input features (x). [39]. 

y =  majority_vote(t) for t in T (2)

where the majority vote(t(x)) shows the class predicted by the majority of the decision trees. 
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3.5. Artificial Neural Network 

An Artificial Neural Network (ANN) is a model for machine learning based on the structure and function of 
biological neural networks [40]. An ANN can be represented mathematically as a series of matrix multiplications, 
known as feedforward computation, followed by a non-linear activation function [41]. ANN constructs layers of 
artificial neurons that process and send information. The network input is routed through the input layer, which linearly 
transforms the input using a weight matrix. Data from the input layer is transmitted through one or more hidden layers 
that perform linear transformations and non-linear activations before reaching the output layer, where a final linear 
transformation and activation generate the network’s final output [42]. A simple graphical representation of ANNs 
architecture is demonstrated in Figure 5. 

 

Figure 5. Graphical representation of ANNs architecture. 

The ANN layout utilized in our research includes two hidden layers, each with 64 neurons, dropout layers to 
minimize overfitting, and ReLU activation functions. It was constructed using TensorFlow’s Sequential API. This 
model is trained across 100 epochs with a batch size of 32, and a validation split of 20% is included to monitor and 
prevent overtraining. The model is constructed with the Adam optimizer and binary cross-entropy loss. Its mathematical 
representation is as Equation (3) [43]. 

𝑓(𝑥) = (
1

1 + 𝑒𝑥𝑝ି௫
) (3)

3.6. Long Short-Term Memory 

The Long Short-Term Memory Model. LSTM can handle sequential data, including time series and plain language 
[44]. An LSTM network is a chain-like structure created by connecting numerous LSTM cells. In addition to three gates 
(input, forget, and output) that control the flow of information into and out of the cell, each LSTM cell has an internal 
state that can store data [45]. The input gate controls data entering a cell, the forget gate controls information leaving a 
cell, and the output gate controls data heading from one layer to the next [46]. This fundamental method enables LSTM 
to handle long-term dependencies while maintaining context over time by selectively preserving or forgetting 
information as it analyzes the sequence [47]. This study carefully configures the LSTM model to recognize patterns in 
time-sequenced data. The rainfall data used in the LSTM model consists of 11,680 daily data points collected over a 
thirty-two-year period. A StandardScaler is used to standardize the data before it is reshaped to meet the specifications 
of the LSTM input. A hyperparameter tuning method utilizing Keras Tuner, which assesses various LSTM and dense 
layer units and varying learning rates, optimizes the model’s LSTM layer to increase its output efficiency. Dropout 
layers are built into this method to reduce overfitting and ensure an ideal structure. Training involves several epochs 
and validation splits to improve the model’s performance. The resulting model is then evaluated on scale test data to 
verify prediction accuracy after the optimum hyperparameters have been identified and established. Figure 6 illustrates 
a visual representation of the LSTM model. 
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Figure 6. Graphical representation of LSTM model. 

The simple mathematical formula of the LSTM model is represented in Equation (4) [48]. 

ht = LSTM (xt, ht−1) (4)

In Equation (4), ht means output at time step t, as a function of the current input xt and the previous output ht−1. 

3.7. Performance Evaluation 

The assessment of the models involved a range of evaluation techniques. These metrics offer an in-depth analysis 
of the model’s performance, facilitating the identification of models that excel in accuracy, dependability, and predictive 
capability. Our research employed five critical metrics for model evaluation: root mean square error (RMSE), Nash-
Sutcliffe efficiency (NSE), percent bias (PBIAS), coefficient of determination (R2), and normalized root mean squared 
error (NRMSE) to gauge the models’ effectiveness [49]. Additionally, recall, precision, F1-score, and the area under 
the curve (AUC) were computed for a more detailed evaluation [50]. 

3.7.1. Confusion Matrix 

To further assess the model’s performance, this article used a confusion matrix presented in Table 2. The confusion 
matrix includes: 

• True Positive (TP): Both actual and predicted classes are positive. 
• False Positive (FP): Actual class is negative, but the predicted class is positive. 
• False Negative (FN): Actual class is positive, but the predicted class is negative. 
• True Negative (TN): Both actual and predicted classes are negative. 

Table 2. The representation of the 2D confusion matrix. 

 Predicted-Positive Predicted-Negative 
Actual-Positive TP FN 
Actual-Negative FP TN 

3.7.2. Receiver Operating Characteristics (ROC) 

The Receiver Operating Characteristics (ROC) curve was also employed as an additional metric to evaluate model 
performance in this study. The ROC curve is a graphical representation that shows the performance of a binary 
classification model by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold 
settings [51]. The true positive rate, plotted on the Y-axis, measures the proportion of actual positives correctly 
identified by the model. The false positive rate, plotted on the X-axis, indicates the proportion of actual negatives 
incorrectly identified as positives. 

The area under the ROC curve (AUC), a crucial metric in model performance evaluation, ranges from 0 to 1. A 
value of 1 represents perfect classification [51]. Higher AUC values, indicating better model performance, demonstrate 
a greater ability to discriminate between positive and negative classes, thus underlining the importance of this metric in 
this study. 
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3.7.3. Parameters Selection 

Table 3 displays the specific model parameters for each technique, including the number of iterations, neurons, 
and depth of hidden layers. These criteria were established based on initial testing to identify each model’s ideal 
performance for flood prediction. 

Table 3. Model Parameters details. 

S.N. Models Parameters 
1 SVM Kernel = rbf, C = 100, gamma = 0.1, epsilon = 0.1 
2 RF n_estimators = 100, random_state = 42 
3 ANN Hidden layer = 100, alpha = 0.0001, solver = adam, verbose = 10, random state = 42, tol = 0.000000001 
4 LSTM Neurons = 256, Optimizer = adam, loss = mse, epochs = 300 

4. Results and Discussions 

The main objective of this research was to develop a machine learning model for predicting possible flooding 
occurrences using several machine learning models. Additionally, the performance of the four distinct flood prediction 
models was compared to identify which model might have been the most effective. Furthermore, this section examined 
the relationship between rainfall temperature and flood incidents, as well as the changes in the county’s climate during 
the previous 30 years. Determining the probability of flooding disasters requires understanding these patterns and 
correlations. 

4.1. Analyzing Sacramento’s LongTerm Rainfall and Climate Trends across Three Decades 

Figure 7a compares monthly rainfall data with a 12-month moving average and reveals the complex patterns and 
aberrations in nearly a century of rainfall records. This study discusses moving average analysis because it clearly 
depicts the long-term trends and patterns in the rainfall data. Understanding the past interactions between flood 
occurrences and climate dynamics requires identifying the changing weather patterns. Individual monthly data were 
shown in light blue to highlight the inherent variability, while the moving average in red smoothed out the fluctuation 
to reveal underlying trends. The statistics revealed substantial seasonal changes, with an exceptionally high peak in 
1998 when rainfall reached 312 mm. The unusual rise correlated with the El Niño event of that year, indicating that 
complex interactions between atmospheric and oceanic conditions could enhance precipitation [52]. The moving 
average indicated a gradual but steady increase in rainfall beginning in the early 2000s and peaking in the latter half of 
the decade. This gradual increase, which peaked at an average of 98 mm in 2015, might have indicated changing climatic 
conditions, potentially due to the overall influence of global [53]. While this trend highlighted changing rainfall patterns, 
it also showed the possibility of increased frequency and severity of rainfall events in the region. Years such as 1998 
and 2007, which observed rainfall surges of 312 mm and 286 mm, respectively, stood out as examples of extreme 
weather events. These fluctuations might be attributed to global atmospheric phenomena, including the well-
documented El Niño and La Niña cycles [54]. 

A 12-month moving average clarified the data by condensing it, providing a more visible perspective on regular 
and irregular precipitation trends. This analytical method did not just expose the unpredictability and seasonality 
associated with rainfall; it emphasized the significance of considering multiple aspects in interpreting such data, ranging 
from regional weather systems to global climate variations and the need for flood risk assessment and management. 
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Figure 7. (a) Average rainfall vs year with a moving average of 12 months. (b) Time-series plot for temperature and rainfall for 
Sacramento County, California. 

Long-term meteorological data analysis was essential for understanding the temporal dynamics of weather patterns 
and their potential impacts on regional hydrology. The visual representation in Figure 7b illustrates historical climate 
data, demonstrating potential relationships between rainfall (in millimeters) and temperature (in degrees Celsius) from 
1990. Our observations indicated that January 2017 experienced considerable precipitation, with 331.39 mm. This 
occurrence appeared to be a coincidence compared to regular seasonal expectations. It also raised the possibility of 
climatic or environmental factors contributing to the recent increase in rainfall. Concurrently, the dataset indicated that 
July 2003 had the highest temperature, peaking at 27.34 °C. This contrasted with the heavy rainfall event, which did 
not occur during the warmer months as could have been predicted. Such data illustrated the variability of climatic 
patterns and the possibility of less clear temperature-precipitation connections. 

The analysis of rainfall and temperature across time indicated a complex interplay between the two factors. The 
maximum rainfall in January might have indicated the influence of specific atmospheric events, such as a strong 
monsoon season or the effects of aquatic life that caused wetter winters in the area. Furthermore, the statistics 
demonstrated that extreme weather conditions did not always occur during the hottest months, as is commonly supposed. 
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This realization led us to examine additional meteorological elements, such as wind stream patterns or oceanic currents, 
that may have played a role in the unusual seasonal rainfall distribution. A complete statistical analysis was conducted 
to investigate the association between temperature and rainfall over the entire dataset. Such an analysis included 
determining correlation coefficients to quantify the degree of the link between the variables and regression models, 
helping to understand better the nature and importance of the trends seen across the research period. Integrating flood 
incidence data, especially for months with historically significant rainfall, provided a complete knowledge of the factors 
that caused flooding, which is critical for disaster preparedness and resource management [55]. It was critical to 
contextualize localized data within larger climatic models. If the observed trends, such as increased rainfall during 
traditionally drier seasons, align with existing climate change projections, this would reinforce the anticipated impacts 
of climate change. In that case, the findings would provide valuable evidence for our evolving understanding of regional 
climate patterns. 

4.2. Correlation of Rainfall, Temperature and Soil Moisture with Flood Events 

The heatmap in Figure 8 displayed the results of a correlation analysis to determine the links between 
meteorological variables—rainfall and temperature—and flooding incidents. These correlations were derived from 
Pearson’s coefficients and could have suggested potential relationships that had to be carefully interpreted within the 
broader context of climatic and hydrologic research studies. 

 

Figure 8. Correlation Heatmap of Rainfall, Temperature, Soil moisture and Flood Occurrence. 

Our findings indicated a significant inverse correlation of −0.65 between rainfall and temperature. This may have 
reflected a climate trend in which more rainfall was frequently associated with lower temperatures, presumably due to 
evaporative cooling and cloud cover, which prevents solar heating. The result was consistent with the study’s reported 
results on temperature and precipitation patterns across the intermountain west in the United States, which supported 
the premise that higher precipitation correlated with lower temperatures [56]. Furthermore, the data showed a moderate 
positive association (0.56) between rainfall and floods. The reason for this is probably due to basin lag time, as there is a 
higher correlation between previous hours of rainfall and subsequent water flow. Hydrological studies supported this 
correlation, highlighting the essential role of precipitation variability in flooding events [22]. The research indicated a 
weak negative association (−0.16) between temperature and flood occurrences. This showed that warmer temperatures 
may have modestly reduced flood danger, maybe due to enhanced evaporation rates. However, this association could have 
been stronger and should have been used cautiously, as it showed only a minor influence of temperature on flooding. 

According to Hettiarachchi et al., determining the impact of rising temperatures on flood risk is equally challenging, 
with significant regional variations [57]. Temperature variations may affect snowmelt and precipitation patterns, 
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changing the frequency of floods in specific areas. Similarly, Seo et al. (2024) note that while rising temperatures lessen 
the risk of flooding by snowfall, they may also raise the risk of flooding caused by rain and other extreme weather 
conditions [58]. Furthermore, when including soil moisture in our research revealed numerous exciting relationships. 
A substantial positive correlation (0.77) between rainfall and soil moisture can be seen, implying that increased rainfall 
raises soil moisture levels [59]. This relationship can be critical for understanding the pre-existing soil moisture 
conditions that can impact the possible risk of flooding events. The association between soil moisture and flooding 
(0.32) indicates that higher soil moisture levels can lead to an increased risk of flooding, as the saturated soils have a 
lower capacity to absorb further rainfall into the soil. 

The negative correlation (−0.89) between temperature and soil moisture suggests that higher temperatures can lead 
to decreasing soil moisture levels, most likely due to greater evaporation [60] This interaction focuses on the need to 
include soil moisture dynamics in flood prediction models. 

These correlations serve as a call for more in-depth research, particularly studies that encompass a broader 
spectrum of factors and take into account regional climatic and environmental conditions.These findings provide a 
strong impetus for developing comprehensive models that incorporate meteorological elements, thereby enhancing 
flood risk prediction and management.. The research approach employed in our study was evidence-based, offering 
preliminary yet insightful information on the interactions between meteorological variables and flood episodes. It 
confirmed the idea with current literature, establishing the foundation for future studies to validate these findings and 
develop predictive models for flood control. 

4.3. Flood Prediction Model Comparison 

This results section includes Figure 9, which compares the prediction accuracy levels of various machine learning 
models, such as SVM, RF, ANN, and LSTM, when applied to predicting floods in the Sacramento region. The accuracy 
shown—81.25% for SVM, 83.75% for RF, 85% for ANN, and 89.9% for LSTM—provided a preliminary indication of 
each model’s potential effectiveness in flood prediction. The observed trend of incremental accuracy obtained from 
SVM to LSTM may have indicated that models with greater complexity and temporal processing skills were more 
appropriate for managing the complexities of hydrological data. The performance of the LSTM model appeared to 
support the idea that recurrent neural networks have an inherent advantage in recognizing and exploiting sequential 
patterns that indicate the potential for flooding in meteorological and climatological data streams. These preliminary 
results could have had significant implications for flood risk management. The LSTM model, due to its ability to detect 
long-term relationships, might have provided more accurate forecasts, which could have helped disaster management 
organizations enhance their preparedness and response strategies. The LSTM model’s substantially better accuracy 
suggested that it could improve the operational efficiency of flood warning systems. 

This research could have suggested a tentative shift in the approaches used for predicting floods. Integrating 
sophisticated machine learning approaches, particularly LSTM networks, into established prediction frameworks may 
have improved their predictive accuracy. This, in turn, may have allowed for more nuanced decision-making in urban 
design and disaster management, increasing the resilience of communities in the Sacramento area to the adverse effects 
of flooding. Furthermore, the comparative analysis conducted in this study provided opportunities for future research. 
Despite the promising elements of the LSTM model, there may have been value in investigating hybrid models that 
combine the distinctive qualities of several models to overcome computing limits or shorten prediction timescales. 
Future research may also have benefited from investigating the combination of varied datasets, such as soil moisture or 
river flow data, to improve prediction precision even more. 

In the broader context of environmental science research, these findings align with the work of Kim et al., who 
demonstrated the effectiveness of LSTM networks in environmental modeling [61]. However, it remained critical to 
approach these conclusions with a balanced perspective, acknowledging the need for more validation and the 
investigation of emergent computational strategies within this emerging field. Thus, cautious optimism is crucial to 
ensure our findings’ robustness and reliability and inspire further research in this promising area. 
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Figure 9. Accuracy Rates of Machine Learning Models. 

4.4. Comparison of Model Accuracy Metrics 

This section of the research paper comprehensively analyzed four predictive models—SVM, Random RF, ANN, 
and LSTM—to estimate the likelihood of flood occurrences in the Sacramento area. 

Table 4 provides a detailed overview of the statistical metrics employed to assess the performance of each model, 
including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Percent Bias (PBIAS), R-squared (R2), and 
Normalized Root Mean Square Error (NRMSE). 

Table 4. Comparison between SVM, RF, ANN, and LSTM Models for Flood Prediction. 

Statistical Index SVM Model RF Model ANN Model LSTM Model 
RMSE (Cfs) 0.43 0.40 0.40 0.31 

MAE 0.19 0.16 0.17 0.14 
PBIAS (%) 39.28 17.86 −8.57 −8.64 

R2 0.18 0.29 0.57 0.59 
NRMSE 0.43 0.40 0.31 0.31 

The analysis suggested that the LSTM model might have had an advantage over the other models in several key 
metrics, achieving the lowest RMSE and MAE. This implied higher accuracy and fewer predictive errors, which could 
have been crucial in practical applications. Interestingly, the LSTM model demonstrated minimal bias (PBIAS close to 
zero), suggesting that it did not systematically overestimate or underestimate flood events, unlike the SVM model, 
which exhibited a significant positive bias. The apparent higher accuracy of the LSTM model might have been attributed 
to its capacity to effectively capture and utilize temporal relationships in the precipitation data, an essential feature for 
accurate flood forecasting. These observations align with existing literature that has noted the proficiency of LSTM 
networks in handling complex sequential data across various fields, including hydrology [62]. Moreover, it has been 
reported that LSTMs generally perform better than traditional models in time-series prediction tasks [63], lending 
support for further validation of the findings of this study. 

Despite its strengths in classification tasks, the SVM model showed a strong positive bias, suggesting a propensity 
to predict floods more frequently than they occurred. Such a tendency might have led to overly conservative forecasts 
that may not have always aligned with real-world conditions. Conversely, the balanced performance of the LSTM model 
underscores its potential suitability for integration into flood early warning systems, where both reliability and accuracy 
are paramount. Improvements in the R2 values from SVM to LSTM were noted, with the LSTM model achieving the 
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highest R2. This indicates that it could explain a more substantial proportion of the variance in flood occurrences from 
the dataset. This aspect underscores the practical utility of the model in operational settings, as discussed in related 
studies [64]. 

Similarly, ROC curves were employed to evaluate the model's accuracy, Which is demonstrated in Figure 10. An 
AUC of 0.5 indicated no discrimination, and 1.0 indicated perfect prediction. AUC values closer to 1.0 indicate a more 
dependable and accurate model for bias-free prediction of outcomes. Considering the complexity and variability of 
weather patterns that lead to floods, the precision of the LSTM model in making predictions might have been beneficial 
for enhancing flood risk management strategies in the Sacramento area. Such improvements could have mitigated floods’ 
impacts on local communities and infrastructure. 

 

 

Figure 10. (a) ROC Curve for training and testing set for SVM Model (b) ROC Curve for training and testing set for RF Model (c) 
ROC Curve for training and testing set for ANN Model (d) ROC Curve for training and testing set for LSTM Model. 

The confusion matrices of ANN, RF, ANN, and LSTM show different levels of accuracy in flood prediction models. 
Matrix (a) accurately detected 50 “No Flood” events and 15 “Flood” events but encountered 13 false negatives and 2 
false positives, which demonstrates considerable difficulties in identifying floods. Matrix (b) enhanced flood detection 
with 48 “No Flood” and 19 “Flood” correct predictions by lowering false negatives to 9 while slightly increasing false 
positives to 4. Matrix (c) has performed well by correctly recognizing 45 cases of “No Flood” and 23 instances of 
“Flood,” showing a significant reduction in false negatives to 5 but having 7 false positives. Matrix (d) and (c) have the 
same confusion matrix result, with identical counts for correct and incorrect classifications. Overall, matrices (c) and 
(d) demonstrated the best balance and dependability in predictions by having fewer false negatives and a consistent 
ability to correctly identify both “Flood” and “No Flood” events. The graphical representation of this matrix is shown 
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in Figure 11. Matrices (a), (b), (c), and (d) correspond to the models ANN, RF, ANN, and LSTM, respectively. Similarly, 
Table 4 and Table 5 compare the performance of the four different machine-learning models used for flood prediction. 

  

  

Figure 11. (a) Confusion matrix for SVM model (b) Confusion matrix for RF model (c) Confusion matrix for ANN model (d) 
Confusion Matrix for LSTM model. 

Table 5. Comparison of performance matrix for SVM, RF, ANN, and LSTM model for Flood prediction. 

 Recall Precision F1-Score AUC 
SVM 0.54 0.88 0.67 0.75 
RF 0.68 0.83 0.75 0.80 

ANN 0.82 0.77 0.79 0.94 
LSTM 0.89 0.83 0.86 0.94 

4.5. Related Research 

Our results demonstrate that the Long Short-Term Memory (LSTM) model outperformed other machine learning 
models predicting floods in Sacramento, California. Similar studies in the Kebbi State in Nigeria compared Logistic 
Regression, Decision Tree, and Support Vector Classification model rainfall-based flood prediction, where Logistic 
Regression was more accurate among all [29]. Another study in Kerala, India, used rainfall indices to compare LSTM-
RNN, Random Forest, SVM, Decision Tree, and Logistic regression models [32]. They found that logistic regression 
achieved the highest accuracy. Similarly, similar research conducted in Bihar, India, which used rainfall and temperature 
as the input parameters, showed that the Decision Tree performed better than the gradient boost and random forest 
algorithms [33]. However, it is crucial to remember that variations may influence model performance between data sets, 
regional climate variables, and model configurations. These results are consistent with prior research in similar climatic 
regions to Sacramento, California. Dettinger et al. studied how atmospheric rivers affected California’s flood risks and 
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found that these rivers significantly raise streamflow and precipitation, essential for forecasting floods [65]. According 
to this study, atmospheric rivers account for 20–50% of the state’s streamflow and precipitation. This highlights the 
need for models that can handle temporal sequences, like LSTM models, which efficiently capture these nuances [65,66]. 
Additionally, research conducted in the Pacific Northwest, an area with a climate similar to California’s, by Hsu et al. 
discovered that LSTM models outperformed Random Forest and Support Vector Machine models regarding flood 
predictions’ accuracy and dependability [67]. The study showed that the prediction of flood incidents was improved 
with the ability of LSTM models to handle sequential data. 

5. Conclusions and Future Scope 

Our research utilized machine learning models to predict flood occurrences in the Sacramento area, focusing on 
evaluating the performance of SVM, RF, ANN, and LSTM algorithms. The meticulous research found that LSTM 
models dominated the group with an outstanding precision rate of 89.9%, followed by ANN at 85%, RF at 83.75%, and 
SVM at 81.25%. Despite specific variations seen during significant flood occurrences, neural network-based models, 
particularly ANN and LSTM, may have been more capable of recognizing the non-linear correlations within 
meteorological data. These results indicate that although the LSTM model had demonstrated a promising ability to track 
accurate data patterns, there was probably still room for improvement, particularly in engaging in severe flood events. 
The LSTM model may have been more accurate than SVM and RF because of its advanced temporal processing 
capabilities, which were probably required to handle the complex hydrological data in Sacramento. Additionally, the 
LSTM model’s reduced PBIAS and lower RMSE and MAE values supported its suitability for risk management and 
flood prediction applications. It appeared conceivable that integrating LSTM networks into Sacramento’s flood 
prediction models might have improved the precision and effectiveness of existing systems. This research was 
consistent with a broader body of literature that acknowledges the importance of advanced computational methods in 
environmental modeling. This study additionally evaluated the flood risks and how they are affected by climate cycles, 
such as El Niño and La Niña, by analyzing changes in rainfall patterns and climate variability over an extended period. 
This allowed us to identify the most critical hydrological patterns. The results of this study may suggest that local 
governments should adjust their approaches to emergency preparedness and flood response and utilize water 
management techniques to improve development planning in high-risk areas. 

Our study, despite its limitations, has yielded promising results that are of significant importance to the field of 
climate science and modeling: 

1. Our research utilized machine learning models, and the availability of time series data and stations can be 
inconsistent, as our research used data from 1990. Some stations might not have complete or continuous datasets, 
which can impact the model’s accuracy and reliability, and any inaccuracies in the data can affect the prediction 
outcomes. 

2. While this article used precipitation, temperature, and soil moisture data in the models, various other parameters, 
like wind speed and humidity, can also impact the flooding scenario, and they were not considered. Including a 
broader range of climate variables, topography, and land use data might improve the model’s predictive capabilities. 

In the future, researchers could work in the following areas: 

1. This article revealed a significant correlation between precipitation, temperature, and flood events, leading to the 
design of algorithms that consider these factors in future studies. The inclusion of other environmental elements, 
such as wind patterns, soil properties, and topographical data, could significantly improve flood prediction models, 
potentially revolutionizing our understanding of flood dynamics. 

2. This study used four different individual models. Combining machine learning models like LSTM and ANN may 
provide a solid foundation for improving predicted accuracy and reliability. This hybrid strategy may better manage 
the intricate relationships within flood-related data, thereby increasing real-time and long-term flood prediction. 

3. Although the study location is a small watershed county in Sacramento County, California, there is a clear need 
for more comprehensive research in a more dynamic, heterogeneous, and meteorologically unique basin that 
experiences a relatively high frequency of flooding. Comprehensive knowledge of how regional and global climate 
trends could influence local weather events may be obtained by investigating comprehensive climate models, 
improving prediction abilities, and developing more effective mitigation techniques. 
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