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ABSTRACT: Intelligent factories provide flexible and adaptive production processes, offering significant competitive advantages 
to manufacturers and are widely studied in industrial production. Information technology is recognized as a key factor influencing 
the production efficiency and intelligence of Intelligent factories. However, current research has primarily focused on the opera-
tional processes of intelligent factories, with limited analysis of information technology. To address this gap, this paper conducts a 
bibliometric analysis of information technology in intelligent factories, along with a review of its development and applications. 
Firstly, the data collection and visualization methods of bibliometrics are introduced. Secondly, bibliometric analyses are performed 
using platforms such as VOSviewer and Scimago to investigate co-authorship, co-citation, and contributions from countries and 
institutions in the field of information technology for intelligent factories. Finally, a framework for information technology in 
intelligent factories is established, summarizing its development in terms of information acquisition, transmission, processing, man-
agement, and control. This paper aims to assist scholars in understanding the development trends of intelligent factory technology 
and enhancing the informatization level of intelligent factories. 

Keywords: Information technology; Bibliometric analysis; Intelligent factory; Industrial production 
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1. Introduction 

Since the Industrial Revolution, the rapid development of electrical and electronic technology, information 
technology, and advanced manufacturing technology has significantly impacted productivity. With the personalization 
of demands, the pursuit of shorter product development and production cycles, and greater resource efficiency, 
production methods are transitioning towards digitalization and intelligence [1]. The forthcoming industrial revolution 
will be driven by the internet, which enables communication between people and machines through large networks in 
Cyber-Physical Systems (CPS) [2]. Figure 1 illustrates the evolution from the pre-internet era to the Internet of Things 
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(IoT). In the pre-internet phase, telecommunications evolved from Innocenzo Manzetti’s concept of the “speaking 
telegraph”, proposed in 1844, to Alexander Bell’s first telephone call from New York to Chicago in 1892, followed by 
the flourishing of mobile and intelligent phone technologies. In 1960, the U.S. Department of Defense funded the 
ARPANET project to develop the first internet prototype. From the 1960s to the 1990s, internet content rapidly 
expanded to include emails, information, and entertainment. After the 1990s, the internet began offering more 
services to individual and commercial users, such as online auctions, retail, and shopping. Since the 2000s, social 
networks have facilitated connections among billions of people, exemplified by platforms like LinkedIn, Facebook, 
Google+, and Twitter [3]. 

In 2011, Germany introduced the concept of Industry 4.0 during the Hannover Messe, marking the beginning of 
the Fourth Industrial Revolution [4]. The goal of Industry 4.0 is to describe highly digitalized manufacturing processes, 
where information flows between machines in a controlled environment, thereby minimizing human intervention [5,6]. 
This initiative aims to leverage advanced information technologies to facilitate the transformation and upgrading of the 
manufacturing sector towards intelligence [7]. It promotes the computerization of manufacturing, advanced industrial 
manufacturing using informatics to automate production, the use of artificial intelligence and its interaction with humans, 
and sustainable technologies and materials use [8]. With the development of the IoT [9] and CPS [10], governments 
and industries worldwide have begun to focus on this trend. To capitalize on this new development and achieve a rapid 
transition toward intelligent manufacturing, strategies such as the European 2020 Strategy, the Industry 4.0 Strategy, 
and China’s Made in 2025 have been proposed [11]. Industry 4.0 is a pioneer for intelligent factories, incorporating a 
range of advanced technologies, including big data analytics, artificial intelligence, advanced robotics, 3D printing, and 
cloud computing [8,12]. As various intelligent technologies have developed, intelligent factories have emerged. 
Intelligent factory technologies include, but are not limited to, CPS, IoT, cloud computing, service-oriented computing, 
artificial intelligence, advanced manufacturing, and data science [13,14]. An intelligent factory is built on the foundation 
of digitalized and automated facilities, utilizing information technologies (such as cloud platforms and industrial IoT) 
to enhance the management of manufacturing resources and service quality [15,16]. Intelligent factories can offer 
manufacturers significant competitive advantages, including personalized products and services, leaner, smarter, and 
more adaptive production environments, more agile supply chains, optimized processes, more innovative organizations, 
enhanced employee performance, and more environmentally friendly manufacturing practices [17]. 

 

Figure 1. The evolution from the internet to the IoT. 

There is no clear definition for smart factories and manufacturing systems, and scholars are actively exploring this 
topic. R. S. Raji suggests that “intelligent” sometimes refers to an independent device, typically composed of sensors, 
actuators, microcomputers, and transceivers [18]. The adjective “smart” is also commonly used to describe objects 
enhanced by implementing additional functionalities, which introduce multi-platform communication and improve their 
computational capabilities. The intelligence of such devices is demonstrated through their collaborative networking 
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with other smart devices, which can monitor system status updates and decide whether to take action. This type of 
network is referred to as a smart network [18]. Steven defines intelligent service systems as learning, dynamically 
adapting, and making decisions based on received, transmitted, and processed data to improve their responses to future 
situations. These systems achieve their functionality through capabilities such as self-detection, self-diagnosis, self-
correction, self-monitoring, self-organization, self-replication, and self-control, resulting from the integration of sensing, 
actuation, coordination, communication, and control technologies [19]. Radziwon et al. reviewed the use of the adjective 
“smart” in a technical context, particularly focusing on applying smart tags in factories and the concept’s expansion. 
They proposed a definition of a smart factory: “A Smart Factory is a manufacturing solution that provides such flexible 
and adaptive production processes that will solve problems arising on a production facility with dynamic and rapidly 
changing boundary conditions in a world of increasing complexity. This special solution could, on the one hand, be 
related to automation, understood as a combination of software, hardware, and/or mechanics, which should lead to the 
optimization of manufacturing, resulting in a reduction of unnecessary labor and waste of resources. On the other hand, 
it could be seen from the perspective of collaboration between different industrial and non-industrial partners, where 
the smartness comes from forming a dynamic organization” [20]. Liu et al. categorized the smart factory hardware 
platform into four layers: the smart device layer, the smart processing unit layer, the workshop-level smart management 
layer, and the smart cloud platform [21]. Wang et al. defined a smart factory as a manufacturing cyber-physical system 
that integrates physical objects like machines, conveyors, and products with information systems such as MES and ERP 
to achieve flexible and agile production. They summarized the framework of the smart factory, which consists of four 
tangible layers: the physical resource layer, industrial network layer, cloud computing layer, and monitoring terminal 
layer [22]. Mittal et al. identified, discussed and aggregated the characteristics, technologies, and enabling factors that 
could define smart manufacturing systems. They identified five key characteristics: context awareness, modularity, 
heterogeneity, interoperability, and composability; eleven technologies, including smart control, energy efficiency, 
cybersecurity, cyber-physical systems (CPS), visual technology, the Internet of Things (IoT), cloud computing/cloud 
manufacturing, 3D printing/additive manufacturing, smart products/parts/materials, data analytics, and IT-based 
production management; as well as three enabling factors necessary for smart manufacturing: legal regulations, 
innovative education and training, and data-sharing systems [23]. In summary, smart manufacturing systems refer to 
the integration of information technology, automation technology, and intelligent technology to optimize, automate, 
and enhance production processes. A smart manufacturing factory is a comprehensive production environment based 
on smart manufacturing systems, aimed at creating a flexible, efficient, and intelligent production environment for 
lifecycle management and overall productivity enhancement. 

Bibliometrics is the process of extracting measurable data through statistical analysis of published research and 
how knowledge within publications is utilized. It summarizes the progress of a particular research topic through 
quantitative statistics, identifying hotspots, emerging trends, and contributions from authors, journals, institutions, or 
countries [24]. In recent years, scholars have conducted bibliometric studies on intelligent factories. For instance, 
Strozzi et al. performed a bibliometric analysis of the concept of “intelligent factory” [25]. Jerman et al. reviewed the 
capabilities that intelligent factories are expected to develop, using bibliometrics and thematic analysis to gain insights 
into new trends in Industry 4.0 [26]. Bertoncel et al. conducted a bibliometric study on big data research related to 
intelligent factories. However, there is a lack of bibliometric analysis on the capabilities of information acquisition, 
transmission, processing, and control in intelligent factories, resulting in the absence of a systematic framework. 
Information technology is a key capability of intelligent factories, serving as the foundation for supporting automation, 
intelligence, and efficient operations. This paper employs bibliometric analysis to review the current state of information 
technology in intelligent factories and discusses its development trends. We obtained publications from the Web of 
Science database covering 2008 to 2024, analyzing aspects such as annual distribution, countries, institutions, authors, 
source journals, keyword co-occurrence, and co-citation. Our aim is to identify current hotspots in this field through 
bibliometric analysis, offering insights for future research directions. 

2. Materials and Methods of Bibliometrics 

2.1. Data Collection 

The bibliometric analysis data used in this study comes from the Web of Science (WOS). WOS includes more 
scientific publications than other major databases such as Scopus, Derwent, China National Knowledge Infrastructure 
(CNKI), and the Chinese Social Sciences Citation Index (CSSCI). It provides comprehensive coverage across multiple 
disciplines and is renowned for its high-quality and specialized literature [27], ensuring that the retrieved materials 
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possess significant academic value and authority. Additionally, WOS offers bibliometric software as a source for 
general statistical data. Therefore, the WOS database is the most widely used resource in bibliometric research. In this 
study, the publication data was collected in a single day (16 July 2024) and downloaded from the Web of Science in 
“plain text” format. The data collection and retrieval strategy is illustrated in Figure 2. The retrieved publications must 
meet the following criteria: 

(1) The search terms were determined using TS (Topic), which includes title, abstract, and author keywords, defined 
as TS = (“intelligent factory”, “intelligent workshop”, “smart factory”, “smart workshop”); 

(2) Within the results obtained, the term “information” was searched; 
(3) The document type was limited to “article”, with a publication period from 2008 to 2024; 
(4) Extraneous items were excluded to better align with the topic. The research fields were limited to Engineering, 

Computer Science, Automation Control Systems, and Robotics. The language was restricted to English. 

After the above search steps, a total of 709 publications remained. This paper will collect information from these 
709 publications: publication details, authors, countries, institutions, journals, keywords, and citations. 

 

Figure 2. Search strategy. 

2.2. Data Visualization 

Bibliometrics is an objective method for identifying the historical status of research fields, predicting future 
development trends, and analyzing research activities and collaborations [28]. In recent years, bibliometric visualization 
software has been widely used to extract and analyze publication data and create knowledge maps. In this study, we 
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used VOSviewer version 1.6.18 to extract bibliographic information such as researchers, institutions, countries, citations, 
and keywords from the TXT files downloaded from WOS, generating visual network maps [29]. Bibliometric analysis 
encompasses citation analysis, co-citation analysis, and bibliographic coupling [30]. Citation data and co-word analysis 
are fundamental quantitative analyses for exploring the content of literature [31]. These visualizations enable 
researchers to identify active authors, institutions, countries, foundational knowledge, research hotspots, research 
frontiers, and other bibliometric information for the topics of interest. In the VOSviewer visual map, each node is 
represented by a labeled circle. In co-occurrence analysis, larger circles indicate higher frequency. The color of each 
circle is determined by the cluster to which it belongs. The thickness and length of the links between nodes represent 
the strength and relevance of the connections between the corresponding nodes. A maximum of 1000 rows is set to 
display the strongest 1000 links between nodes. 

3. Results of Bibliometrics 

3.1. Analysis of Year of Publication 

A total of 709 publications related to intelligent factories were retrieved from 2008 to 2024. The annual output of 
publications on intelligent factories is shown in Figure 3. Since the concept of intelligent factories emerged in 2008, the 
number of related publications has shown a generally stable growth trend. Before 2014, the number of publications was 
relatively low, but after 2014, there was a sharp increase in the number of publications. This indicates a significant rise 
in interest in intelligent factories after 2014. The global annual output of publications increased from 7 in 2008 to 116 
in 2022, representing a growth of 1557.14%. Prior to 2014, the annual number of publications was less than 8, but from 
2014 onwards, the number began to grow steadily. Over the next 7 years, the annual output surpassed 100, reaching its 
peak. Although only half of 2024 has passed, 52 relevant publications have already been retrieved. It is foreseeable that 
in the coming years, research on this topic will continue to increase in both quantity and quality. This growth trend 
indicates that more and more scholars are linking intelligence with factory production and actively publishing their 
research findings. The increase in publications also highlights that intelligent factories are currently a research hotspot, 
playing a crucial role in meeting consumers’ complex and diverse needs. 

 

Figure 3. Number of Articles Related to Intelligent Factory, 2008–2023. 

3.2. Countries or Regions of Publication 

A total of 72 countries or regions have published works on this topic. Based on the geographical distribution on 
the global productivity map, publications on intelligent factories are concentrated in Asia, North America, and Europe. 
Table 1 lists the countries or regions with more than 10 related publications, while Figure 4 shows the annual publication 
numbers for these countries or regions from 2000 to 2021. China is the largest contributor, followed by South Korea, 
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the United States, and Germany. Chinese papers have been cited the most, with a total of 6318 citations, followed by 
those from the United States, which have garnered 3603 citations. These data reflect China’s strong awareness of the 
advantages of intelligent factories and its leading position in related research, highlighting China’s active influence and 
significance in this field. According to Li, since the onset of the industrial revolution in the 18th century, China has 
emerged as one of the world’s most important manufacturing countries [32]. Italy, Spain, and Japan are closely followed, 
indicating these countries’ active participation and competitiveness in related research fields. Additionally, the 
involvement of countries like Mexico and Norway enhances the geographical diversity of the research field. This broad 
geographical distribution emphasizes that research on intelligent factories is not solely the responsibility of a single 
country or region but rather a global concern and collaborative effort. Figure 4 also shows that international 
collaboration is primarily divided into eight clusters: blue, led by China; red, led by Germany; green, led by South 
Korea; brown, led by Canada; brown-yellow, led by India; orange, led by Sweden; purple, led by Finland; and pink, led 
by the United Kingdom. The countries within these clusters come from different continents, reflecting the widespread 
distribution of research on smart factories. 

Table 1. The country/region by number of publications. 

Country/Region No. of Publications Country/Region No. of Publications 
China 234 France  16 

South Korea 140 Sweden  16 
United States 84 Australia  15 

Germany  54 Brazil  14 
Taiwan  47 Finland  13 

United Kingdom 45 Portugal 12 
Italy 44 Singapore 12 
Spain 37 Saudi Arabia 11 
Japan 19 Irish 10 

Canada 18 Mexico 10 
India 18 Norway 10 

 

Figure 4. Visualization map of the network of published literature in a country or region. 
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SCP refers to the number of papers co-authored by authors of the same nationality, while MCP indicates the number 
of papers co-authored with authors from other countries. The MCP ratio can be considered a measure of global 
collaboration. Based on the MCP ratio, China, the United States, Germany, the United Kingdom, and South Korea rank 
high in terms of international cooperation. In terms of international collaboration between countries or regions, China 
has received cooperation from many nations, with the most significant partnerships being with Japan, the United States, 
the United Kingdom, and South Korea. However, the level of cooperation among other countries remains low. We used 
VOSviewer to analyze global collaboration in 72 countries. The Total Link Strength (TLS) refers to the thickness of 
the lines connecting the nodes, representing the level of international collaboration. As shown in Figure 5, the co-
authorship visualization map reveals that China, the United States, and Germany are the top three countries. South 
Korea ranks second in terms of publication quantity. Still, in terms of collaboration intensity and citation counts, it ranks 
sixth, as the United States, Germany, and the United Kingdom perform better in these aspects. The connections between 
countries are numerous and dense, especially among China, the United States, Germany, the United Kingdom, and 
South Korea, which exhibit extensive and strong collaboration with other countries worldwide. In contrast, Algeria, 
Ethiopia, Mali, Romania, and Slovenia have only a single connection, likely constrained by their developmental 
environments, indicating that these five countries’ research and collaboration intensity is relatively weak. This also 
highlights that the research on smart factories is closely related to the level of national development. 

 

Figure 5. Visualization map of international cooperation countries or regions. 

3.3. Institutional Contributions 

Papers related to intelligent factories originate from 1019 institutions. Table 2 presents the top ten research 
institutions based on the number of published papers. China, South Korea, Germany, and the United States dominate 
the scientific research landscape. Seven of the top ten institutions by output are based in China, while one is from the 
United States, Germany, and South Korea. In terms of publication quantity, China holds a leading position. 
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Table 2. The top 10 productive institutions ranked by the number of publications. 

Rank Institutions Country Count H-Index Total Citations Average Citation Per Pape 
1. Sungkyunkwan University South Korea 27 9 1167 43.22 
2. Shanghai Jiao Tong University China 21 12 708 33.71 
3. Chinese Academy of Technology China 18 9 560 31.11 
4. South China University of Technology China 16 12 920 57.5 
5. Tongji University China 11 10 110 10 
6. University of California System United States 11 8 1022 92.91 
7. Beihang University China 10 5 238 23.8 
8. Fraunhofer Gesells.chaft German 10 5 208 20.8 
9. University of Hong Kong China 10 8 319 31.9 

10. Northeastern University China China 9 4 104 11.56 

Most articles originate from Sungkyunkwan University in South Korea, Shanghai Jiao Tong University, the 
Chinese Academy of Sciences, and the South China University of Technology in China. The top ten institutions 
collectively published 143 papers, accounting for 20.17% of total publications. Setting a minimum publication threshold 
of five, 44 institutions meet this criterion. VOSviewer generated a network visualization map to examine institutional 
collaborations, visually representing six types of institutions. As illustrated in Figure 6, most institutions involved in 
intelligent factory research are part of the collaboration network. The Chinese Academy of Sciences (TLS = 32), 
Shanghai Jiao Tong University (TLS = 17), and the University of Hong Kong (TLS = 16) exhibit the highest Total Link 
Strength (TLS) values. Coordination among institutions is more prevalent than collaboration among countries. However, 
interactions among institutions within the same country tend to be relatively insular, with red, blue, and purple clusters 
dominated by Chinese institutions, a brown cluster primarily consisting of South Korean institutions and a green cluster 
that includes the University of Hong Kong and several institutions from the United Kingdom. This indicates that due to 
cultural and developmental differences between countries, collaboration among institutions regarding smart factory 
research is limited to within national borders. 

 

Figure 6. Visualization map of the institutional cooperation network. 

3.4. Distribution of Source Journals and Top 10 Highly Cited Articles 

As shown in Table 3, among 200 academic journals, the top three journals publishing articles related to intelligent 
factories are Applied Sciences Basel, IEEE Access, and Sensors. Active journals that published more than 10 articles 
collectively contributed 315 papers, accounting for 44.43% of the total publications. Among the journals with over ten 
articles, the one with the highest total citations is the International Journal of Production Research, while the journal 
with the highest impact factor is the Journal of Manufacturing Systems (IF 2023 = 12.2). It is followed by IEEE 
Transactions on Industrial Informatics (IF 2023 = 11.7) and the Journal of Industrial Information Integration (IF 2023 
= 10.4). IEEE Access has the highest H-index (H = 19), followed by Sensors (H = 13) and the Journal of Manufacturing 
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Systems (H = 13). These findings indicate that journals like IEEE Access, the Journal of Manufacturing Systems, and 
the International Journal of Production Research have significantly advanced this topic. 

Table 3. Journals with more than 10 publications. 

Rank Journal Count IF JCR Citations H-Index Percentage 
1. Applied Sciences Basel 53 2.5 Q2 628 12 7.48% 
2. IEEE Access 47 3.4 Q2 1515 19 6.63% 
3. Sensors 41 3.4 Q2 671 13 5.78% 
4. International Journal of Advanced Manufacturing Technology 25 2.9 Q2 590 10 3.53% 
5. Electronics 21 2.6 Q2 192 8 2.96% 
6. Journal of Manufacturing Systems 20 12.2 Q1 1013 13 2.82% 
7. IEEE Internet of Things Journal 18 8.2 Q1 486 11 2.54% 
8. Journal of Intelligent Manufacturing 16 5.9 Q1 1339 8 2.26% 
9. IEEE Transactions on Industrial Informatics 14 11.7 Q1 659 9 1.97% 

10. Journal of Industrial Information Integration 13 10.4 Q1 313 6 1.83% 
11. Computers Industrial Engineering 12 6.7 Q1 421 9 1.69% 
12. Expert Systems with Applications 12 7.5 Q1 256 7 1.69% 
13. International Journal of Computer Integrated Manufacturing 12 3.7 Q2 397 8 1.69% 
14. International Journal of Production Research 11 7 Q1 1854 10 1.55% 

The influence of journal articles is a key criterion for assessing their authority, typically measured by citation 
counts. Table 4 shows the top 20 most cited publications, covering various topics related to Industry 4.0, intelligent 
manufacturing, and related fields. Additionally, most articles were published after 2017, indicating a growing interest 
in these areas recently. Current hot topics include the Internet of Things, Industry 4.0, intelligent manufacturing, and 
intelligent factories. 

Table 4. The top 10 highest cited articles. 

Title Journal Citations PY Ref. 
Literature review of Industry 4.0 and related technologies Journal of Intelligent Manufacturing 917 2020 [33] 
Intelligent Manufacturing: Past Research, Present Findings, and 
Future Directions 

International Journal of Precision Engineering 
and Manufacturing-Green Technology 

743 2016 [34] 

Convergence of Edge Computing and Deep Learning: A 
Comprehensive Survey 

IEEE Communications Surveys and Tutorials 667 2020 [35] 

The industrial management of SMEs in the era of Industry 4.0 International Journal of Production Research 591 2018 [23] 
Scanning the Industry 4.0: A Literature Review on 
Technologies for Manufacturing Systems 

Engineering Science and Technology-An 
International Journal-Jestech 

519 2019 [36] 

Intelligent manufacturing, manufacturing intelligence and 
demand-dynamic performance 

Computers & Chemical Engineering 427 2012 [37] 

Intelligent Factory-Towards a factory-of-things Annual Reviews in Control 397 2010 [38] 
A dynamic model and an algorithm for short-term supply chain 
scheduling in the intelligent factory industry 4.0 

International Journal of Production Research 314 2016 [39] 

Review of job shop scheduling research and its new 
perspectives under Industry 4.0 

Journal of Intelligent Manufacturing 280 2019 [40] 

BSeIn: A blockchain-based secure mutual authentication with 
fine-grained access control system for industry 4.0 

Journal of Network and Computer 
Applications 

261 2018 [41] 

Specifically, Oztemel et al.’s “Literature review of Industry 4.0 and related technologies” ranks first with 709 
citations. It outlines the definition of Industry 4.0 and discusses the trends in the transition from machine-dominated 
manufacturing to digital manufacturing, providing important references for future research. Following closely is Kang 
et al.’s “Intelligent Manufacturing: Past Research, Present Findings, and Future Directions”, which ranks second with 
743 citations. Notably, six papers focus on the development of Industry 4.0, emphasizing the critical role of intelligent 
manufacturing in digital transformation. The ten articles come from eight different journals, indicating that intelligent 
factories span multiple fields. These publications also highlight the interdisciplinary nature of intelligent manufacturing, 
emphasizing the key role of intelligence and digitalization in driving factories’ sustainable and efficient production processes. 

3.5. Contribution and Distribution of Authors 

A total of 2745 authors have published 709 indexed articles, with an average of four authors per article. Table 5 
lists the ten most productive authors. Jeong Jongpil has published the most articles, followed by Li Di and Wan Jiafu. 
The highest citation count is attributed to Son, Ji Yeon, followed by Li Di and Wan Jiafu. Additionally, Ji Yeon Son 
has the highest average citations per article. These authors have made significant contributions to the intelligent 
transformation of factory production, accelerating the development of intelligent factories. 
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Table 5. The top 10 productive authors. 

Rank Author Total Publications Total Citations Per Citations 
1. Jeong, Jongpil 14 68 4.86 
2. Li, Di 8 699 87.38 
3. Wan, Jiafu 7 679 97 
4. Caramés, Tiago M. Fernández 5 606 121.2 
5. Chen, Baotong 5 511 102.2 
6. Paula Fraga-Lamas 5 606 121.2 
7. Liu, Chengliang 5 423 84.6 
8. Kim, Dong-Seong 4 41 10.25 
9. Jae-Min Lee 4 51 12.75 

10. Son, Ji Yeon 4 885 221.25 

In this study, co-authorship analysis was conducted using VOSviewer, and the minimum number of articles 
published by an author was set to two. Among the 2745 authors, 219 met this criterion. The co-authorship network of 
these 219 authors is depicted in the Figure 7. The collaboration network is divided into several clusters, represented in 
different colors. Due to the large number of clusters, the primary clusters are labeled with 18 different colors. The 
largest red cluster is centered around 11 authors, including Liu Chengliang, Li Di, and Wan Jiafu. Li Di has the most 
collaborators (n = 23), followed by Wan Jiafu (n = 20) and Noh, Sang Do (n = 18). As shown in Figure 7, there are 
numerous author clusters, and there is little connectivity between clusters, indicating that collaboration among authors 
tends to occur in small groups that are relatively stable. However, many authors within the same cluster are from 
different countries, which expands the geographical distribution of research on intelligent factories. 

 

Figure 7. Visualization map of author collaboration networks. 
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3.6. Co-Citation Analysis of Cited Literature 

The 709 indexed publications have cited a total of 30,662 references. Table 6 lists the top 10 co-cited documents, 
with citation frequencies ranging from 21 to 47. The paper titled “A Cyber-Physical Systems Architecture for Industry 
4.0-based Manufacturing Systems”, published in 2015 in Manufacturing Letters, is the most cited reference. With a 
citation threshold of 5, a total of 278 references meet this criterion. 

Table 6. The top 10 most co-cited references. 

Rank First Author Year Journal Title Citations 

1. Jay Lee 2015 Manufacturing letters 
A Cyber-Physical Systems architecture for 
Industry 4.0-based manufacturing systems 

47 

2. Heiner Lasi 2014 
Business & Information Systems 
Engineering 

Industry 4.0 32 

3. Baotong Chen 2018 IEEE Acess 
Intelligent Factory of Industry 4.0: Key 
Technologies, Application Case, and Challenges 

28 

4. Mario Hermann 2016 
49th Hawaii International Conference 
on System Sciences 

Design Principles for Industrie 4.0 Scenarios 26 

5. Li Da Xu 2014 
IEEE Transactions on Industrial 
Informatics 

Internet of Things in Industries: A Survey 24 

6. 
Jayavardhana 

Gubbi 
2013 Future Generation Computer Systems 

IoT: A vision, architectural elements, and future 
directions 

24 

7. Shiyong Wang 2016 
International Journal of Distributed 
Sensor Networks 

Implementing Intelligent Factory of Industrie 4.0: 
An Outlook 

23 

8. Fei Tao 2018 
The International Journal of 
Advanced Manufacturing Technology 

Digital twin-driven product design, 
manufacturing and service with big data 

23 

9. Shiyong Wang 2016 Computer Networks 
Towards intelligent factory for industry 4.0: a 
self-organized multi-agent system with big data 
based feedback and coordination 

22 

10. Qinglin Qi 2018 IEEE Access 
Digital Twin and Big Data Towards Intelligent 
Manufacturing and Industry 4.0: 360 Degree 
Comparison 

21 

3.7. Keyword Analysis 

We can gain insights into the areas of interest and future research directions within the discipline through keyword 
co-occurrence analysis. Keywords reflect the main themes of publications; from a total of 2636 keywords extracted 
from abstracts and titles, 62 keywords meet the criteria of appearing at least 6 times. Using VOSviewer, the top 20 
keywords in current research were retrieved and clustered, as shown in Table 7, identifying certain established themes 
and unexplored areas within the given research field. Figure 8 illustrates the visualization network of the 62 keywords, 
with node labels representing the keywords and the size of each node corresponding to the frequency of keyword 
occurrences. Links connecting two nodes indicate the co-occurrence relationship between the two keywords. All similar 
keywords were automatically grouped into five clusters by VOSviewer, represented in blue, red, green, brown, and 
purple. Figure 8 and Table 7 show that emerging keywords related to smart factories include smart manufacturing, the 
Internet of Things, artificial intelligence, wireless sensor networks, cyber-physical systems, Industry 4.0, and deep 
learning. Most of these keywords are associated with information technology. This indicates that information 
technology plays a critical role in the operation of smart factories. 

Table 7. The top 20 keywords with the highest frequency related to intelligent factory. 

Rank Keywords Frequency TLS Rank Keywords Frequency TLS 
1. industry 4.0 123 288 11. artificial intelligence 19 57 
2. intelligent factory 119 253 12. cloud computing 18 60 
3. internet of things 77 187 13. security 17 60 
4. intelligent manufacturing 72 197 14. cyber-physical systems 17 58 
5. industrial internet of things 49 144 15. big data 16 41 
6. deep learning 40 63 16. production facilities 14 56 
7. machine learning 26 62 17. augmented reality 14 36 
8. digital twin 26 22 18. sensors 13 17 
9. edge computing 22 79 19. real-time systems 11 43 
10. blockchain 21 41 20. reliability 10 48 
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Figure 8. Co-occurrence analysis of keywords. 

To explore the evolutionary trends over time, VOSviewer colored the keywords retrieved from publications based 
on their Average Appearance Year, as shown in Figure 9. Keywords with a purplish hue represent those that appeared 
earlier, while those with a yellowish hue represent more recent keywords. Emerging keywords in recent years include 
digital models, real-time systems, reinforcement learning, fault detection, 5G, artificial intelligence, and the IoT. These 
keywords represent currently popular information technologies. This indicates that current research on smart factories 
focuses on these emerging information technologies. 
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Figure 9. Time of keyword appearance. 

4. Research Hotspots and Advances in an Intelligent Manufacturing Factory 

The keyword co-occurrence analysis concludes that technologies such as the Internet of Things, cyber-physical 
systems, wireless sensor networks, and deep learning are important in the research and operation of smart manufacturing 
factories. Emerging information technologies, such as 5G, digital modeling, artificial intelligence, reinforcement 
learning, fault detection, and machine learning, are the current hotspots in the research of smart manufacturing factories. 
Emerging information technologies provide reliable opportunities for implementing intelligent manufacturing. With the 
application of cloud computing [42], big data [43,44], wireless sensor networks (WSN) [45], IoT, and mobile internet 
[46] in manufacturing environments[47], machines, tools, materials, products[48], employees, and information systems 
(such as ERP and MES) can connect and communicate with each other. Intelligent factories deeply integrate information 
technology with automation by leveraging industrial IoT, cloud computing, and big data [49], as well as artificial 
intelligence technologies to enhance the intelligence of machines and products [50]. Tao et al. proposed an intelligent 
factory framework that combines industrial networks, cloud services, and monitoring terminals with intelligent 
workshop objects (such as machines, conveyors, and products) within the intelligent factory [51]. All elements of the 
intelligent factory are interconnected, exchanging information to identify and assess situations. Artificial intelligence, 
along with information and communication technologies, is widely applied in real-time analysis, reasoning, planning, 
forecasting, and managing manufacturing activities [37]. The IoT provides a new way to perceive and access 
manufacturing resources. Park et al. proposed an IoT architecture [52]. The IoT layer describes data from sensors placed 
in numerous devices. The data layer specifies the types of data collected from sensors regarding human activities. The 
cognitive computing layer includes steps such as data preprocessing, data analysis, cognitive feature extraction, and 
machine learning. The service layer addresses various applications of cognitive computing [53]. 

The IoT represents the fusion of sensor and computer technologies within wireless communications, while cloud 
services provide shared access to networks as a pool of computing resourcesThe combination of these technologies 
enables all devices to participate in the concept of intelligent factories [11]. However, processing large amounts of data 
requires another technology, namely the analysis of big data. With the help of analytical tools (data mining or machine 
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learning), the analysis and processing of big data is one of the most important elements in the entire Industry 4.0 concept 
[54]. In summary, intelligent factories focus on vertical integration, which involves vertically integrating various 
components within the factory boundaries. They represent a cyber-physical system oriented towards manufacturing, 
characterized by high flexibility, high efficiency, and high transparency [55]. 

Emerging information technology runs through the entire operational process of intelligent factories and is one of 
the key technologies in this context. This chapter will focus on the research hotspots of emerging information 
technologies in smart factories based on the co-occurrence analysis of keywords related to smart factories. These 
technologies play a key role in information acquisition, information transmission, information processing, information 
management, and control of intelligent manufacturing factories. Information collection serves as the foundation for the 
operation of intelligent manufacturing factories. This process involves the real-time acquisition of various data during 
production, such as equipment status, production progress, and product quality, using technologies like the Internet of 
Things, sensors, and RFID. Information transmission refers to the process of transmitting the collected data in real-time 
to the central processing system or relevant departments through technologies such as 5G, wireless sensor networks, 
and wired networks. Information processing involves the collected data’s analysis, mining, and decision support. 
Intelligent manufacturing factories can process and analyze vast amounts of data using technologies such as big data, 
neural networks, artificial intelligence, and data mining. Information management and control encompass the entire 
information flow, including optimizing production, predicting and preventing faults, and ensuring product quality. 
These four components collectively constitute the information infrastructure of intelligent manufacturing factories, 
ensuring flexible, efficient, and highly intelligent production. 

4.1. Information Acquisition 

Manufacturing resource data is the foundational information for workshop scheduling and intelligent services in 
intelligent factories. The Manufacturing Execution System (MES) relies on data analysis and utilizes intelligent devices 
within manufacturing scenarios to implement effective production scheduling. Bai categorizes manufacturing resource 
data into two main types: hard resources and soft resources [56]. As shown in Table 8, Tao and others further classify 
manufacturing resource data into four categories: hard manufacturing resources, computing resources, intellectual 
resources, and other resources [57]. As shown in Figure 10, different sensing devices and adapters enable the intelligent 
perception and recognition of various manufacturing resources. Sensing devices include 2D barcodes, RFID readers, 
sensors, video capture systems, and GPS. Adapters encompass software interface adapters, sensor adapters, model 
adapters, knowledge adapters, network adapters, storage adapters, technical resource adapters, and other types of 
adapters [51]. Additionally, resource data can be collected from SCADA systems, PLCs, IoT devices, or other 
specialized sensors. Intelligent factories primarily rely on sensors for data monitoring, collection, and recording. As 
shown in Table 9, sensors include traditional physical sensors and intelligent sensors such as RFID [58], machine vision, 
and virtual sensors [59]. Traditional sensors consist of sensing elements, signal processing and conditioning circuits, 
and sensor interfaces, and they convert physical [60] or chemical stimuli into electrical signals for evaluation and 
analysis. Intelligent sensors possess four key characteristics, onboard central processing unit (CPU), small size, wireless 
functionality, and low-cost commitment [61]. Intelligent sensors enhance traditional sensors by incorporating 
microprocessors, enabling digital processing, analog-to-digital or frequency conversion, computation, and interfacing 
functions. This integration facilitates self-diagnosis, self-identification, and adaptive decision-making capabilities [62]. 

As computers and the IoT converge in industrial processes, conventional sensors gradually transition to intelligent 
sensors [63,64]. Intelligent sensors process summary data from production processes in real-time, connecting with 
various operating systems to synchronize production operations on the production line or workstation with actual 
operational flows and information streams [65], enabling machines and other intelligent devices to make self-
determined decisions [66,67]. 
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Table 8. Classification of manufacturing resource. 

Manufacturing Resource Classification Resource Description 

Hard manufacturing 
resource 

Equipment 
resources 

All kinds of equipment have certain functions required in manufacturing activities. 

Material resources 
Material, goods, raw semi-manufactured and processed materials, fuel, finished products, and 
so on are required in manufacturing activities. 

Computational 
resources 

Application system 
resources 

All kinds of software are required in manufacturing activities, including design systems, 
simulation systems, analyzing systems, management systems, and graph processing systems. 

Server resources 
All kinds of servers are required in manufacturing activities, such as racks of servers, blade 
servers, machine cabinet servers, etc. 

Storage resources 
All kinds of memories are required in manufacturing activities, such as flash cards, micro 
hard disks, etc. 

Intellectual resources 

Human resources 
The people that has certain ability required in manufacturing activities, such as operation, 
manage or technique and so on. 

Knowledge 
resources 

All the knowledge required in manufacturing activities, such as experience knowledge, 
models, standards, related documents and other resources. 

Technical resources The set of technical resources and conditions required in manufacturing activities. 

Other resources 

Public service 
resources 

Information querying, training, maintenance, and soon, provided for resource users. 

User information 
resources 

The information that records the basic information about both resources provider and user, 
such as credit, etc. 

Other basic 
resources 

Other resources which are not included in the above-mentioned resources. 

Table 9. Common sensors and their applications. 

Classification Applications Classification Application 

Temperature sensor 
Measurement of the temperature of equipment, 
workpieces, environment, etc. 

Hall effect sensors 

Used to detect current, voltage and 
magnetic field, etc., widely used in 
monitoring and control of electrical 
equipment and motors. 

Humidity Sensor Measuring environmental humidity Acoustic sensors 
When the sound sensor detects a signal, it 
converts the voltage level to the 
corresponding sound level 

Pressure sensors 
Used for monitoring pressure changes in 
pipelines, containers, equipment, etc. 

Vibration sensors 
Used to monitor machine vibration and 
indicate potential machine problems 

Flow sensors 
Measure the flow rate and flow of liquids or gases 
in pipes or channels. 

Torque Sensor 

Converts torque and rotational response 
into electrical signals, typically used to 
measure static or dynamic variables in 
motors, turbines or generators 

Position sensor 
Including optical, ultrasonic, inductive, 
photoelectric, capacitive and magnetic sensors. 

Machine Vision 
sensors 

Visual data is captured as a series of 
images and processed using machine 
learning algorithms after the digitization 
process 

Acceleration sensor 
Detection of acceleration and vibration of 
equipment or workpieces 

Virtual Sensors 
Virtual sensors are advanced applications 
in the machine software layer that 
enhance device knowledge 

Optical sensor 
Including photoelectric switches, fiber optic 
sensors, etc., used to detect the position, color, 
transparency and other information of the object 

Radio-Frequency 
Identification 
(RFID) 

Wireless technology for recognizing and 
tracking objects, animals, people, etc.  

Nuclear, chemical, 
particulate and 
nanoparticle sensors 

Based on nanoparticles and microparticles that 
can be monitored directly inside the object being 
monitored. For detecting chemical components or 
contaminants in gases and liquids 
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Figure 10. Sensor recognition resource framework. 

4.2. Information Transmission 

With the support of IoT technologies such as RFID, embedded systems, and various intelligent sensors (like optical 
fiber sensors), multiple devices can be connected to achieve information monitoring and control that require integrating 
different data sets. This applies to both physical hardware manufacturing resources[68] (such as manufacturing 
equipment) and software manufacturing resources (like manufacturing software or tools, as well as demand information, 
product structure data, process information, etc.), all of which can be intelligently sensed and connected to a broader 
network [69,70]. The IoT enables virtual objects’ perception, connection, communication, computation, and control [71]. 

Before the advent of network technologies, global systems for mobile communications (GSM), near field 
communication (NFC), low-power Bluetooth, wireless local area networks (WLAN), multi-tier networks, GPS, and 
sensor network technologies were all used and applied independently. However, IoT technology allows these 
communication technologies to be used in conjunction. As shown in Table 10, some new wireless technologies, such 
as WirelessHP [72], OFDMA wireless [73] control, real-time WiFi [74], and Wireless Networks for Industrial 
Automation and Process Automation [75], can replace extensive wiring in industrial machinery, providing connections 
between machine parts with microsecond-level delays. However, the range of these networks is limited to a few meters, 
making them unsuitable for widespread use in process automation across entire industrial sites, especially in remote 
areas where low infrastructure costs must be maintained. 

Table 10. Attributes and key performance of novel wireless technologies [76]. 

 WirelessHART NB-IoT ISA100.11a IEEE 802.11ah 
Bandwidth 200 kHz–1.2 MHz 180 kHz 2 MHz 1/2/4/8/16 MHz 
Topology mseh cellular star/mesh/star-mesh star/tree 

Deployment private operator-based private private 
Range 15 km 20 km 1.5 km 1 km 
MAC TSMP(TDMA, 10 ms) OFDMA(DL)&SC-FDMA(UL) TDMA/CSMA/CA(10–12 ms) EDCA/DCF 

Min. cycle time 500 ms 1.6 s 500 ms 20 ms 

Using 802.15.4-based technologies such as WirelessHART, ISA 100.11a, Time-Slotted Channel Hopping (TSCH), 
and WIA-PA allows for several hundred-meter coverage. Sub-GHz wireless technologies like LoRa and SigFox further 
extend the coverage due to their better signal propagation characteristics (up to 15 km and 50 km, respectively). Still, 
their low data rates (up to 50 kbps and 0.1 kbps, respectively) result in long transmission times for both uplink and 
downlink, making them unsuitable for frequent critical traffic [76]. When applied in industrial production, these wireless 
technologies can be categorized under Industrial Wireless Networks (IWN). The IWN communication system can be 
divided into four components: intelligent entities, IWN space, IWN external, displays, and servers. As shown in Figure 
11, the IWN is formed through wireless radio connections between nodes. Outside the IWN, access point nodes and 
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gateways create bridges to other networks (such as cellular networks, wired networks, and other public networks) [54]. 
Below are the commonly used information transmission networks in intelligent factories. 

 

Figure 11. Industrial Wireless Networks principle. 

(1) Wireless Sensor Networks (WSN) 

A wireless sensor network consists of spatially distributed and independent devices that collect and transmit 
information digitally over wireless channels [64]. WSNs can utilize hundreds of sensors, accompanied by gateways and 
coordinating devices, to sense a system’s environmental or physical conditions and monitor or control them. Each node 
contains one or more sensors, which can be either passive or active [77]. These sensors communicate with each other 
and transmit information to a server PC that manages the entire network’s information [78]. Typical technologies and 
communication standards employed in wireless sensor networks include WiFi and Bluetooth at the physical and MAC 
layers, as well as ZigBee, 6LoWPAN protocols [76], and LoRa at the network [79,80], security, and application layers.  

(2) Public Land Mobile Networks 

These range from 2G to future 5G communication systems, supporting machine-to-machine communication or 
specific systems for sensor integration. Mobile terminals can serve as opportunistic sensor platforms or access gateways 
for WBAN/WPAN networks. 

(3) Narrowband IoT (NB-IoT) 

NB-IoT is designed to provide deployment flexibility, allowing operators to use only a small portion of the 
available spectrum for this technology, targeting ultra-low-end IoT applications. NB-IoT outperforms most competitors 
in terms of coverage, security, and availability. However, its unpredictable latency, which can be on the order of seconds, 
makes it suitable only for latency-insensitive processes [81]. 

(4) WirelessHART 

This is the oldest and most extensively evaluated wireless solution in the industrial Internet of Things. The simplest 
variant of a WirelessHART network consists of sensors, actuators, access points, gateways, and network managers. As 
a result, WirelessHART is limited by latency and scalability [82]. 

(5) Time Slotted Channel Hopping (TSCH) 

TSCH networks utilize scheduling at each node to achieve determinism, robustness against channel fading, and 
energy savings. The robustness and determinism make TSCH suitable for industrial applications in classes 2–6, 
assuming it can meet range requirements. However, there is a strong trade-off between latency and scalability, as 
multiple channels cannot be used in parallel by different subordinate nodes due to the centralized master node [83]. 

(6) ISA100.11a 
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The ISA100.11a protocol is designed for secure and reliable wireless operation, used for non-critical monitoring, 
alarm, supervisory control, open-loop, and closed-loop control applications. In dense deployments, ISA100.11a devices 
join the network faster than WirelessHART devices, with slightly higher reliability, but they also exhibit greater latency 
in cyclical communication compared to WirelessHART [84]. 

4.3. Information Processing 

One of the key enabling technologies for intelligent manufacturing is the Internet of Things, which forms a global 
information network composed of many interconnected “things”. In this context, manufacturing “things” may include 
materials, sensors, actuators, controllers, robots, human operators, machines, equipment, products, and material 
handling devices. The IoT and big data realize cyber-physical manufacturing systems, reflecting the physical world in 
cyberspace through data-driven information processing, modeling, and simulation. Analytics in cyberspace utilize the 
knowledge and useful information derived from data to provide feedback on optimal actions (or control schemes) to the 
physical world. The manufacturing Internet of Things data contains a wealth of information about the fine-grained 
details of manufacturing systems. There is an urgent need to process this data to extract useful information relevant to 
manufacturing enterprises—ranging from individual machines to interconnected processes, from the complete product 
lifecycle to the supply chain. However, data availability does not imply that the information is ready for use; rather, it 
necessitates the development of new information processing methods in the IoMT context. The first phase is data 
representation, which involves describing the data in optional domains (such as the frequency domain, wavelet domain, 
and state space domain) to reveal hidden information. An effective representation scheme simplifies the statistical 
measurement of significant patterns in the transformed domain. The second phase is feature extraction, which 
characterizes and quantifies specific patterns in IoMT data. Finally, information visualization is essential for efficiently 
and clearly conveying characteristics and patterns to end-users through graphics and animations. The key to information 
processing lies in handling the collected data, with data processing being one of the main stages in the knowledge 
discovery process [85,86]. Data processing encompasses various tasks, including data transformation, integration, 
cleaning, reduction, classification, and normalization. 

Data cleaning primarily involves handling missing data and removing noise. Missing values refer to data that was 
not stored or collected due to sampling errors, cost constraints, or limitations in the acquisition process. There are many 
methods to address the issues caused by missing values in data preprocessing [87]. The first option is often to discard 
instances that may contain missing values. However, this approach can introduce bias in learning, and important 
information may be lost. The second method involves using maximum likelihood procedures to sample approximate 
probabilistic models to fill in the missing values. Additionally, since the true probabilistic model for a specific dataset 
is often unknown, machine learning techniques have become very popular, as they can be applied without providing 
any prior information. There are two commonly used methods in the literature for noise removal. The first is to use data 
smoothing techniques to correct noise, especially when the noise affects the labeling of instances. However, this task is 
challenging and usually limited to a small amount of noise. The second method involves using noise filters that can 
identify and remove noisy instances from the training data without modifying the data mining techniques [88]. 

Data reduction aims to obtain accurate, fast, and adaptive models while maintaining low computational complexity 
to respond to incoming objects and changes quickly. Therefore, dynamically reducing the complexity of incoming data 
is crucial for obtaining such models. There are several methods of data reduction: 

Dimensionality Reduction: When the number of predictive variables or instances in a dataset increases, data 
processing faces difficulties related to dimensionality. Researchers have studied numerous techniques aimed at reducing 
the number of features, including Feature Selection (FS), Feature Extraction (FE), feature indexing, or locally preserved 
projections [89,90]. Among these, FS and FE are widely applicable. FS eliminates irrelevant or redundant features and 
can also remove features that may lead to unintended associations in learning algorithms, thus reducing overfitting risk. 
The use of FS also reduces the search space determined by features, making the learning process faster and requiring 
less memory. On the other hand, FE generates a simpler feature space by transforming the original feature space, 
combining the original set of features into a new set of variables with lower redundancy [91]. Feature indexing allows 
functions to use indexing techniques to convert features from one type to another. 

Feature Space Simplification: This includes normalization and discretization, with discretization currently being 
the more commonly used method. Discretization summarizes a set of continuous values into a finite set of discrete 
intervals. It converts quantitative data into qualitative data by partitioning numerical features into a limited number of 
non-overlapping intervals. Using the generated boundaries, each numerical value is mapped to each interval, thus 
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becoming discrete. Discretization also offers additional benefits. First, it simplifies and reduces data, which helps 
produce faster and more accurate learning. Secondly, it enhances readability, as discrete attributes are often easier to 
understand, use, and interpret [92]. 

Data classification primarily involves machine learning algorithms and deep learning techniques. Machine learning 
algorithms include decision trees, which use tree structures to classify data; Support Vector Machines (SVM), which 
classify data by finding the best classification boundaries; and random forests, which combine multiple decision trees 
to improve classification accuracy [93]. Deep learning encompasses techniques such as Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), and Deep Belief Networks (DBNs) [94]. Neural networks are one of the 
techniques to train the knowledge base for the prediction of responses [95]. As shown in Figure 12a, CNN is particularly 
well-suited for classifying audio [96] and image [97] data and is widely used in industrial inspection and quality control. 
Figure 12b shows that RNNs are suitable for classifying time series data, such as predicting equipment failures or 
monitoring production line states. As shown in Figure 12c, DBN consists of multi-layer neural network structures and 
is effective for feature extraction and classification of complex data [98]. The restricted Boltzmann Machine (RBM) is 
the basic building block of DBN. These techniques and methods play a vital role in intelligent manufacturing. By 
accurately classifying data, they can enhance production efficiency, optimize resource allocation, and improve the 
intelligence and automation of manufacturing systems. 

 

Figure 12. Principles of CNN, RNN, DBN. (a) Principle of CNN, (b) Principle of RNN, (c) Principle of DBN. 
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Additionally, with the development of information technology, advancements such as MTConnect, cloud 
computing, Virtual Reality (VR) and Augmented Reality (AR), machine vision, and big data analytics have significantly 
enhanced the information processing capabilities of intelligent factories. 

This technology provides an information model that includes a common vocabulary (dictionary) and semantics for 
manufacturing data, as well as communication protocols (particularly through Agents) that enable manufacturing 
equipment to communicate and exchange information using standard internet technologies [99,100]. This capability 
facilitates interoperability among various machines, software systems, and devices used in manufacturing environments [101]. 

Cloud computing provides internet-based computing services, including data storage, data management, KPI 
calculation, data visualization, and data analysis. There are three main categories of cloud computing services: 
Infrastructure as a Service (IaaS) [102], Platform as a Service (PaaS) [103], and Software as a Service (SaaS) [104]. 
Cloud computing enables IoT systems to access shared computing and storage resources ubiquitously, overcoming the 
limitations of limited computing resources and storage capacity in “things”. 

The integration of VR and AR with IoT systems enhances asset utilization, workforce training, root cause diagnosis, 
and maintenance. VR immerses a person’s physical presence in a virtual environment, simulating human interactions 
and virtual objects [105]. VR is widely applied in digital design, workforce training, and predictive maintenance. In 
contrast, AR enhances the physical environment of the real world through computer inputs such as instructions, sounds, 
videos, or graphics [106]. 

Machine vision systems can perform tasks such as image acquisition and analysis and recognize certain features 
or objects within images. As shown in Figure 13, the main components of a typical vision system include scene 
constraints, optical acquisition, preprocessing, segmentation, feature extraction, classification, and driving [107]. The 
role of the image acquisition subsystem in the vision system is to convert optical image data into numerical data that a 
computer can process. Light from a light source illuminates the scene, generating an optical image via an image sensor. 
Optical images are converted into electrical signals that can be transformed into final digital images using image arrays, 
digital cameras, or other means. This digitized image can undergo preprocessing, segmentation, feature extraction, and 
other tasks. During this phase, images can be classified and interpreted and combined with scene descriptions to perform 
driving operations for interaction with the scene. Consequently, the driving subsystem provides a feedback loop with 
the original scene to adjust or modify any given conditions for better image capture [108]. 

 

Figure 13. Typical vision system schematic. 

The big data generated by IoT sensors possesses the following characteristics: large volume, high velocity, high 
accuracy, and high diversity [109]. The challenges of data in manufacturing lie in diversity and accuracy. Diversity 
arises from the different types of data in the manufacturing process, ranging from power curves to machining parameters 
and from acoustic emissions to cutting force signals, each requiring specific signal acquisition parameters [110]. The 
manufacturing workshop environment also exhibits high non-stationarity, uncertainty, and noise [111]. Big data 
analytics provides efficient and effective methods and tools for processing large-scale IoT data, facilitating information 
processing and manufacturing process control. For example, the new MapReduce framework can be used to develop 
parallel algorithms for processing large amounts of data across distributed processors or computer clusters and to build 
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virtual machine networks [112]. Hadoop is an open-source software framework that enables the rapid processing of big 
data and runs analytical software on distributed computing clusters [113]. The availability of such big data tools helps 
overcome the limitations of traditional algorithms in handling large datasets and further extracts useful information and 
new patterns to enhance the “intelligence” level of m44anufacturing. 

4.4. Manufacturing Management and Control 

4.4.1. Predictive Maintenance 

Predictive Maintenance (PdM) is a modern maintenance strategy widely adopted across various industries. Certain 
sectors require absolute reliability, such as power plants, public services, transportation systems, and emergency 
services; predictive information is often essential for long-term planning and various operational activities (maintenance, 
production, inventory, etc.) in these fields [114]. Technical maintenance connects equipment to a Computerized 
Maintenance Management System (CMMS) through a sensor. The system can directly monitor equipment performance 
during standard operations to predict failures and analyze all data collected from equipment sensors. As shown in Figure 
14, this data can be used to predict when an equipment failure will occur, allowing the maintenance team to correct the 
problem before it occurs. Essentially, predictive maintenance predicts failures or malfunctions in deteriorating systems 
by assessing the system’s condition or utilizing historical data, thereby optimizing maintenance efforts [115]. According 
to Jardine et al., maintenance methods capable of monitoring equipment conditions for diagnostics and predictions can 
be categorized into three main types: statistical, artificial intelligence, and model-based [116]. While model-based 
methods require mechanical knowledge and theory of the monitored equipment and statistical methods necessitate a 
mathematical background, the application of artificial intelligence methods in PdM is increasingly prevalent [114]. 
Figure 15a illustrates a typical vibration-based analysis. An acceleration sensor samples the signal, the envelope curve 
is extracted, and the eigenfrequency is obtained through integration and filtering. The signal is then pre-processed using 
Fast Fourier Transform, rectification, and demodulation. Finally, the extracted data are input to the Condition 
Monitoring System (CMS) for analysis, including industrial frequency, frequency doubling, resonance, and more. 
Figure 15b is an artificial intelligence method, also based on physical modeling, but the difference is that it does not 
provide a failure analysis method but through big data methods to learn the feature values, which can be used to predict 
future failures through “reinforcement learning” and “supervised learning” methods. It can predict future failures 
through “reinforcement learning” and “supervised learning” methods, and by learning a large amount of data, it can 
independently grasp the potential failures of the equipment. 

 

Figure 14. Predictive Maintenance Workflow. 
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Figure 15. Predictive maintenance methods. (a) Predictive maintenance based on state, (b) Predictive maintenance based on data driven. 

Many scholars have conducted research on predictive maintenance based on these three methods. Farooq et al. 
proposed a data-driven predictive maintenance method and architecture based on predictive analytics using a 
regularized deep neural network for the ring spinning process. They also established a framework linking the physical 
world of spinning information and the network world [117]. Baptista et al. compared various artificial intelligence 
methods with statistical methods (referred to as life usage models) to predict when equipment is likely to fail, with 
results indicating that AI methods outperform statistical methods [118]. Onanena et al. introduced a pattern recognition 
method using a linear regression model with extracted subsets of different features to estimate the lifespan of fuel cells, 
aiming to estimate the duration of fuel cells based on electrochemical impedance spectroscopy measurements [119]. 
Sheng et al. discussed the application of Gaussian Process Regression (GPR), an important Bayesian machine learning 
method, in bearing degradation assessment [120]. Susto et al. proposed a predictive maintenance system for silicon epitaxial 
deposition that compared two different predictive techniques: the Kalman predictor and the particle filter with a Gaussian 
kernel density estimator [121]. Schöpka et al. described the practical situations of developing and implementing new 
process control entities, such as virtual metrology and predictive maintenance, which utilize multivariate statistical models 
and machine learning techniques to predict process quality parameters and equipment failures [122]. 

4.4.2. Quality Control 

In today’s globalized market, the level of product quality is a key factor influencing the competitiveness of 
enterprises. We are at the center of the Fourth Industrial Revolution, known as Industry 4.0. In the manufacturing 
process, quality must be maintained through Quality 4.0 technologies to address significant quality-related challenges. 
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This quality revolution has developed technologies such as artificial intelligence, machine learning, big data, cloud 
computing, augmented reality, virtual reality, new materials, and the IoT to communicate better and maintain the quality 
of manufacturing systems [123,124].Throughout the entire process of product quality formation, process quality is the 
most fundamental link in establishing product quality. The quality of each process directly or indirectly affects the final 
product quality [125]. Jiang et al. developed an intelligent process quality control model based on networked 
manufacturing, which integrates quality information collection, information management, quality inspection, quality 
diagnosis, and process quality adjustment, enabling intelligent process quality management and control [126]. With the 
advancement of information technology, tools and methods such as artificial intelligence, machine vision, artificial 
neural networks, and statistical process control have been employed for intelligent process quality management. 

Artificial intelligence has many applications in the manufacturing industry, such as predictive analytics, quality 
inspection, intelligent automation, and sensors, all of which are based on different AI technologies [127]. One of the 
most relevant AI technologies is machine learning, which offers tremendous potential for developing and integrating 
strategies to optimize products and manufacturing processes [128]. Machine learning is often considered a method for 
intelligent manufacturing inspection and impacts quality control systems in the industry. Brito et al. described a machine 
learning approach that enables collaborative robots to support intelligent inspection and corrective actions in the quality 
control system during manufacturing, supplemented by intelligent systems that can learn and adjust their behavior based 
on the inspected parts [129]. Goldman et al. highlighted more advanced machine learning models designed to mitigate 
the cost impact of manual inspections and reduce testing and validation time before production [130]. Schmitta et al. 
developed an integrated solution based on supervised machine learning predictive models for industrial manufacturing 
quality inspection, allowing for the prediction of final product quality based on recorded process parameters [131]. 
Machine learning has derived various techniques and algorithms in areas such as process control, quality control, and 
raw material classification [132]. 

Artificial vision, or computer vision, is a technology that simulates human vision through computers and algorithms. 
It encompasses image capture, processing, and analysis for the purposes of recognizing, classifying, and understanding 
visual data. Artificial vision technology is commonly used in intelligent factories for quality inspection, workpiece 
identification, robot navigation, and more. By implementing a hybrid model, Qing et al. utilized artificial vision and 
robotics to support process quality and fault detection. This model includes an automated component that evaluates the 
relevant dimensions, standards, and levels of the Intelligent Manufacturing Capabilities Measurement Model 
(SMCMM), thereby determining the feasibility of applying this model in manufacturing companies [133]. Stavropoulos 
et al. developed a computer vision system that evaluates product quality from the perspective of dimensional accuracy. 
It employs image processing algorithms to detect edge images of profiles on a rubber seal extrusion production line and 
classifies the results to determine the dimensions of the extrudate [134]. Deshpande et al. combined machine vision 
with the Siamese Network approach for image recognition, enabling remote inspection of surface quality after 
production without causing any damage to the steel [135]. This method requires minimal labeled data when training 
new categories of images, making it easily adaptable to different tasks. 

As shown in Figure 16, artificial neural networks are one of the most popular learning algorithms used in various 
applications. They consist of an input layer, one or more hidden layers, and an output layer. Each layer is made up of 
interconnected neurons that process inputs using activation functions, while the connection weights are adjusted during 
the learning process [136]. Struchtrup et al. adopted a holistic approach to perfectly predict the quality of parts, thereby 
simplifying and automating the necessary data processing steps [137]. Stavropoulos et al. proposed neural networks to 
identify and classify different patterns in the dimensions of the studied profiles, which helped reduce costs [135]. Tao 
et al. introduced a new neural network architecture for detecting and localizing of metal surface defects [138]. In this 
work, a Cascaded Autoencoder (CASAE) was used in the first stage to locate and extract defect features from input 
images, followed by a compact CNN in the second stage for accurate classification of the defects. In similar cases, 
applying the U-Net architecture of neural networks has also proven to be very useful for significant surface detection [139]. 
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Figure 16. Principle of artificial neural network. 

Statistical Process Control (SPC) monitors and controls quality by tracking production metrics alongside the well-
known Six Sigma methodology, which employs five key steps (Define, Measure, Analyze, Improve, and Control or 
Define, Measure, Analyze, Design, and Verify) to ensure that products meet customer requirements and achieve zero 
defects. Kolosowski et al. demonstrated the adaptability of a universal SPC solution suitable for the production of parts 
and small batch production. They proposed the possibility of using Shewhart control charts for a fair assessment of 
processes, thereby reducing the costs associated with quality improvement actions [140]. Bottania et al. implemented 
SPC and Six Sigma metrics in an Italian food company to evaluate processing capability and reduce processing time [141]. 

4.4.3. Intelligent Scheduling and Rescheduling 

The ultimate goal of manufacturing and supply chain management is to produce products according to specified 
schedules and specifications and subsequently deliver them to customers. Its performance largely depends on the 
effectiveness of production planning and control activities. Scheduling can be defined as allocating several tasks that 
must be completed within a specified timeframe to the resources of the production system (machines, tools, and workers) 
to meet specific due dates [142]. In reality, manufacturing systems are characterized by uncertainty and random events, 
which are generally addressed through dynamic scheduling methods. These methods can be categorized into proactive 
and reactive approaches or a combination of both. When uncertainty can be quantified in some way, proactive 
scheduling is typically employed to account for potential random events that may occur during the execution of the 
schedule [143]. During scheduling execution, it is then observed whether disruptions occur that exceed the tolerance of 
the schedule, necessitating rescheduling. Periodic rescheduling represents a discretization in time, allowing 
rescheduling points to align with the time required to compute a new schedule. Additionally, significant interruptions 
between rescheduling can lead to suboptimal performance. If system instability caused by frequent schedule 
regeneration can be avoided, event-driven strategies will yield favorable solutions. Therefore, correct scheduling and 
rescheduling are crucial for ensuring the smooth operation of factories. 

With the increasing cooperation among factories, distributed manufacturing systems have gained widespread 
application [144,145]. A distributed flow shop consists of multiple flow shops located in different locations, and this 
type of scheduling problem is prevalent in industries such as automotive and textiles. Distributed flow shop scheduling 
includes displacement flow shop scheduling and hybrid flow shop scheduling [146]. Displacement flow shops refer to 
scenarios where each workpiece follows the same processing sequence on the machines, with each machine processing 
only one workpiece at a time [147]. Hybrid flow shops are arranged in a flow line layout, comprising multiple operations, 
each with one or more parallel machines, and are also known as flexible flow shops [148,149]. The main solution 
algorithms for traditional shop scheduling include constructive heuristic methods (e.g., Gupta, Johnson, Palmer, CDS, 
NEH), operations research methods (e.g., branch and bound, cutting plane methods, dynamic programming), artificial 
intelligence-based metaheuristic algorithms (e.g., iterative greedy algorithms [150,151], simulated annealing, tabu 
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search, iterative local search algorithms [152,153], genetic algorithms, ant colony algorithms), and improved heuristic 
and metaheuristic hybrid algorithms [154]. 

With the advancement of communication and intelligent technologies, CPS can further evolve to manage big data 
and leverage interconnectivity among machines, achieving intelligent, resilient, and adaptive production. Moreover, 
integrating CPS with current industrial practices in production, logistics, and services can transform existing factories 
into Industry 4.0 facilities with significant economic potential [155]. Therefore, adaptive scheduling and control play a 
critical role in the development of CPS and intelligent factories [143,156]. Intelligent scheduling aims to utilize the 
characteristics of intelligent manufacturing and the Industry 4.0 environment to generate flexible and efficient 
production schedules in real-time [157]. As shown in Figure 17, all manufacturing elements can acquire real-time 
information in IoT-based manufacturing workshops. When anomalies occur, upper-level systems can promptly identify 
and respond to these events based on the information, enabling timely and accurate interventions [158]. 

Many scholars have investigated intelligent scheduling and rescheduling in factories using advanced intelligent 
communication technologies. For instance, Shiue et al. proposed a real-time scheduling method based on reinforcement 
learning, integrating offline learning and Q-learning mechanisms with multiple scheduling rules to respond to changes 
in the workshop [155] effectively. Chekired et al. developed an optimal workload allocation algorithm by solving mixed 
nonlinear integer programming, introducing an efficient fog architecture suitable for industrial IoT applications and a 
new scheduling model for processing IoT data, enabling real-time scheduling of various industrial equipment requests 
[159]. Wong et al. created a hybrid contract protocol to support two types of multi-agent system structures for dynamic 
integration of process planning and scheduling, allowing both horizontal negotiation among local agents and vertical 
intervention by supervisory agents [160]. Kück et al. proposed a data-driven simulation-based method for adaptive 
scheduling and control optimization in dynamic manufacturing systems, utilizing real-time data provided by cyber-
physical systems [143]. Rossit et al. introduced an effective intelligent tolerance scheduling approach that reduces the 
need for rescheduling in response to unforeseen disruptive events [157]. Yang et al. conducted a study utilizing Deep 
Reinforcement Learning (DRL) for intelligent scheduling and reconfiguration of Reconfigurable Flow Lines (RFL), 
addressing real-time optimization of scheduling [161]. 

 

Figure 17. The architecture of intelligent scheduling and rescheduling. 
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5. Scientific Challenges and Application Cases of Intelligent Manufacturing Factories 

5.1. Scientific Challenges 

In the context of intelligent manufacturing, the establishment of intelligent manufacturing factories is essential to 
achieve advanced manufacturing based on network technology and manufacturing data. Additionally, the 
implementation of intelligent manufacturing factories should take into account the current state of the manufacturing 
industry and its specific needs. Due to the differing characteristics of the manufacturing and information sectors, many 
technical issues must be addressed to accelerate the development of intelligent factories. 

Due to the foundational role of underlying equipment, monitoring manufacturing resources is crucial for 
reconfiguring production lines, dynamic scheduling, and information integration in intelligent factories. Therefore, it is 
necessary to enhance the intelligence level of manufacturing equipment. In the context of mixed production, the 
coordination and information exchange among multi-module manufacturing units should be further explored. Program 
combinations should be optimized to improve workshop efficiency. Intelligent devices should be capable of collecting 
production information, providing compatible data interfaces, and supporting universal communication protocols. 
Additionally, equipment should be able to sense the production environment and collaborate with other devices within 
the intelligent factory. Flexible manufacturing is a typical characteristic of intelligent factories; however, challenges 
remain, including the high proprietary nature of production lines, dynamic scheduling, and tight coupling between 
functions and equipment. In the context of intelligent manufacturing, the data generated by intelligent devices is largely 
unstructured [11]. The high-speed operation of workshops requires higher standards of data collection. In other words, 
data collection is the foundation for big data analysis, with sensors being the primary tools for this purpose. A significant 
issue for the future may be the use of old sensors (installed on outdated equipment), leading to unacceptably high long-
term manufacturing and maintenance costs. Kozlowski et al. noted that equipment available on the market (such as 
CNC machines) lacks sensors to achieve structurally optimized distribution on machine components [162]. A related 
issue is the current industrial landscape’s lack of appropriate measurement signals, resulting in the need for additional 
sensors to be installed on equipment. The problem of weak sensor signals may lead to personal injuries, product losses, 
and production disruptions. Even minor, temporary communication errors can cause severe production interruptions 
[163]. Such production issues may arise from signal inference among devices operating at the same frequency. Research 
by Lao et al. indicates that real-time preventive maintenance of sensors and actuators can significantly mitigate damages 
caused by production losses, process interruptions, and downtime based on specific routine regulations [164]. Moreover, 
the security of sensor data storage is a critical issue. Besides the sensors that collect data, the sovereignty of the data is 
also important, particularly from a psychological perspective. Only companies that believe in their network security are 
willing to store and share their data. Sensor security does not demand high battery capacity; however, various 
technologies such as key-protected identity authentication, encrypted code verification, secure gateways, security 
protocols, and remote wireless security management have made security considerations overly complex, with security 
costs becoming a significant concern. 

The Internet of Things (IoT) has facilitated the deep integration of information and industrialization. Advanced 
IoT technologies are crucial for the realization of intelligent factories. Currently, the limitations of industrial wireless 
sensor networks include spatial arrangements in the environment, deployment time, and maintenance costs of 
communication channels. Additionally, a mature universal standard for industrial wireless sensors has yet to be 
established, and the standardization process must continue to advance. In complex electromagnetic environments, data 
transmission must meet the requirements for reliability and real-time control of devices. Furthermore, network security 
has become critically important with the integration of large-scale equipment. The IoT is more susceptible to network 
threats than traditional networks, and the severity of these threats has increased. This is primarily due to the complexity 
of the IoT environment, which broadens the attack surface [165]. The large number of connected devices and users 
increases the number of cybersecurity vulnerabilities and potential attack targets. The lack of uniformity in connection 
protocols, platforms, and hardware standards can lead to network security flaws. The interconnection of virtual and 
physical environments enables network threats to translate into physical consequences, resulting in greater impact [166]. 

A large amount of manufacturing data provides a comprehensive description for intelligent factories. This large 
industrial data is collected from multiple sources (such as equipment, products, and customers) in a heterogeneous 
manner [167]. However, manufacturing data cannot be directly utilized due to high dimensionality, variable 
measurements, and significant noise. Therefore, it is crucial to define data semantics through a glossary of 
manufacturing terminology. Domain ontologies offer potential semantic solutions for data applications. By leveraging 
big data in intelligent manufacturing, proactive maintenance of equipment, optimized product design, and streamlined 
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production lines can be achieved in intelligent factories. Knowledge-driven manufacturing presents opportunities for 
transforming traditional industries into intelligent industries, while data mining technologies also pose significant 
challenges for enterprises. Additionally, data-based product optimization design requires the integration of data 
reception and feedback mechanisms into traditional products, allowing the products themselves to become data sources. 
This enables products to participate in the data collection process, providing technical information to product designers. 
To realize knowledge-based intelligent manufacturing, manufacturing entities should be capable of data collection, data 
fusion, and extraction of manufacturing resource features. Intelligent factories should integrate data resources (such as 
supply chain, product data, logistics data, etc.) into service platforms to offer product services like sales forecasting and 
quality analysis [11]. However, the diverse and complex applications within data transmission and access networks 
necessitate frequent identity verification and more sensitive data collection. The presence of numerous participants in 
the network (including end users, service providers, and infrastructure providers), various services (such as virtual 
machines and cloud services), and infrastructures (including user devices and edge data centers) leads to an increasing 
number of security vulnerabilities, resulting in external threats and internal malicious behavior [168]. Intelligent 
manufacturing factories typically include an edge computing framework managed by a cloud center, which faces 
various threats. Moreover, attackers may exploit program vulnerabilities for privilege escalation to perform 
unauthorized operations [169]. Establishing dedicated networks within factories to prevent data leakage is also 
challenging, as it involves multiple stakeholders, including cloud operators, mobile network operators, and network 
device providers. In the network, confidentiality, integrity, and authentication are achieved through encryption. 
According to Kerckhoffs’ principle, encryption algorithms are public, and public encryption algorithms with length 
limitations may be susceptible to brute-force attacks [170]. In addition to data from sensors, data in intelligent factories 
also encompasses various communications between users and industrial IoT devices, some of which may involve 
sensitive information. Effectively deleting encrypted data poses a challenge, as it is difficult to ensure the revocation of 
sensitive data and to guarantee that there are no means to recover deleted data. 

5.2. Application Cases 

Modern manufacturing enterprises’ product structures and processes are becoming increasingly complex, with 
rising quality requirements, a growing variety of products, and smaller batch sizes (even down to a single unit). As a 
result, design and manufacturing process changes are occurring more frequently, and the division of production tasks 
within manufacturing companies is becoming increasingly refined. Modern factories are rapidly transitioning towards 
digitalization, virtualization, networking, intelligence, software-defined operations, data-driven approaches, platform 
support, value-added services, and intelligent decision-making. Below are examples of factory information technology 
upgrades and transformations. 

Zhang et al. addressed issues in the torque converter housing production line by intelligently upgrading and 
optimizing the hardware design, processing technology, and equipment system, resulting in a 55.1% increase in 
production line efficiency [171]. Garza et al. developed a set of information processing toolkits that upgraded equipment 
from automated machines to Industry 4.0 workstations. This toolkit includes the structure supporting the sensors and 
data processing units, allowing for monitoring detection systems and enhancing the quality and speed of the detection 
process [172]. Yi demonstrated the feasibility of aiding small and medium-sized enterprises in their transformation 
within the mobile internet environment, analyzing the viability of implementing such transformations and indicating 
that the industrial internet is beneficial for transforming traditional industries and upgrading enterprises [173]. Huang 
identified issues such as slow speed and low fusion accuracy in current IoT data fusion methods. To enhance the 
effectiveness of heterogeneous data fusion in IoT, they proposed an IoT heterogeneous data fusion method based on 
intelligent optimization algorithms, improving IoT’s computational speed [174]. 

In addition, scholars have applied much research to practical production. Zhang et al. invented a carbide tool 
cleaning and coating production line and method, which addresses the shortcomings of manual tool cleaning, such as 
low efficiency and high labor intensity, as shown in Figure 18a [175]. Xu et al. developed an automatic production line 
for automobile hubs with a serial layout, compact structure, and small footprint, allowing devices to work together to 
automate hub production and improve efficiency [176,177]. As shown in Figure 18b, Li et al. developed a monitoring 
and control system for the cutter state of numerical control machine tools. This enables precise monitoring of cutter 
status and significantly reduces downtime during abnormal diagnostics, thereby improving production efficiency [178]. 
Zhang et al. developed a multi-station self-positioning floating clamping and automatic workpiece flipping intelligent 
fixture system, which features self-positioning clamping and automatic workpiece flipping functions, as shown in 
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Figure 18c [179]. Li et al. created a hard alloy blade multi-procedure integrated automatic production line under robot 
scheduling, which integrates four main functions: blade dulling, cleaning and drying, coating, and packing, allowing a 
single set of fixtures to complete all processes and simplifying the production line structure as shown in Figure 18d 
[180]. This fixture system has multiple stations, enabling simultaneous processing of multiple workpieces and 
enhancing production efficiency. Li et al. also developed an intelligent execution system for medical care and health 
care based on the Internet of Things and the Internet, which allows data transmission and feedback via mobile phones 
and the internet, treating users and institutions as part of an Internet of Things network capable of real-time data 
exchange [181]. Lastly, Li et al. invented an ultrasonic high-frequency vibration screen capable of reciprocating 
swinging, which combines ultrasonic vibration with mechanical vibration, resulting in a larger amplitude in the vertical 
direction with minimal impact, thereby reducing the risk of material breakage [182]. 

 

Figure 18. Principle of the device. (a) Carbide tool cleaning and coating production line and method [175], (b) Cutting tool state 
monitoring and control system and method for numerical control machine tool [178], (c) Ultrasonic high-frequency vibration screen 
capable of carrying out reciprocating swinging [179], (d) Hard alloy blade multi-procedure integrated automatic production line 
under robot scheduling [180]. 

6. Conclusions 

Information technology is crucial for the development of intelligent manufacturing factories. This article is focused 
on conducting a bibliometric analysis of information technology in an intelligent manufacturing factory, and a review 
is provided, leading to the following conclusions: 

1. This paper provides A comprehensive analysis of information technologies related to intelligent factories from a 
bibliometric perspective. Reviewing publications over the past 16 years, the bibliometric study visualizes intelli-
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gent factory information technology research, including publication trends, global collaboration patterns, and re-
search hotspots. The visual results indicate that the number of related publications has generally exhibited stable 
growth since the term “intelligent factory” emerged in 2008, with China as the largest contributor in published 
works. Keyword analysis indicates that emerging information technologies such as digital models, 5G, fault detec-
tion, artificial intelligence, and sensor networks have increasingly prominent research positions in smart manufac-
turing factories in recent years, highlighting the enormous growth potential of information technology in smart 
factories. These findings assist the research community in identifying emerging themes and cutting-edge fields, 
thereby guiding future research. 

2. A review of the information technology of intelligent factories is conducted in this paper, focusing on four aspects: 
information collection, information transmission, information processing, and information management and con-
trol. Various sensors are primarily used for information or data collection in smart factories. With advancements in 
sensor technology, a wide range of intelligent sensors is extensively applied. Information transmission is primarily 
facilitated through wireless sensor networks, public terrestrial mobile networks, and other communication technol-
ogies. Information processing is mainly dependent on techniques such as data transformation, cleaning, and clas-
sification. Information control is primarily applied in predictive maintenance, quality control, scheduling, and rescheduling. 

3. This paper focuses on reviewing information management and control. Predictive maintenance is primarily based 
on three approaches: physics-based models, knowledge-based methods, and data-driven techniques. Quality con-
trol mainly depends on machine learning, computer vision, neural networks, and statistical process control. Intel-
ligent scheduling and rescheduling are characterized by flexibility, with various methods proposed by scholars 
based on reinforcement learning, machine learning, and data-driven approaches, all grounded in advanced com-
munication and intelligent technologies. 

4. The scientific challenges of smart manufacturing factories are summarized in this paper from both technical and 
security perspectives. In terms of technology, the level of intelligence in underlying devices is awaited to be im-
proved, data interfaces are to be enhanced, communication issues with sensors are to be addressed, and a mature 
universal standard has yet to be established in the field of industrial wireless sensor networks. Additionally, enter-
prises face challenges related to data processing and data mining technologies. In terms of security, the safety of 
sensors, the cybersecurity of the Internet of Things, the security of data storage, transmission, and access, the 
security of sensitive data handling, and security costs also need to be considered. 
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