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ABSTRACT: This paper addresses the finite-time stabilization problem for a nonholonomic wheeled mobile robot (NWMR) with 
input constraints. By utilizing the hyperbolic tangent function tanh( ) , bounded finite-time stabilization controllers are developed. 

In addition, an explicit upper-bound estimate for the closed-loop settling time is given, and the level of input constraints is 
characterized by parameters that depend on the actuator’s capacity. A thorough finite-time stability analysis is carried out using 
appropriate Lyapunov functions. For a compact set contained in the domain of attraction, a guideline is presented to clarify how to 
construct it. Finally, simulation results show the effectiveness of the developed controllers. 
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1. Introduction 

Nonholonomic wheeled mobile robot (NWMR) is a typical nonlinear control system subject to nonholonomic 
constraints. It has been widely applied in daily life, scientific research and engineering [1]. Since the stabilization of a 
NWMR is an important topic, then there have been fruitful results [2–5]. It should be pointed out that many of the 
existing results stabilize the NWMR asymptotically, which implies that the closed-loop system has an infinite settling 
time. However, for accomplishing specific tasks within a limited timeframe, finite settling time is preferred. Therefore, 
finite-time control is more suitable for practical applications. Lots of methods have been used to address the finite-time 
control problems, such as the sliding mode control method [6–8], the homogeneity method [9,10] and the backstepping 
method [11]. In addition, these methods have been applied in various systems, including quadrotors [12], spacecraft [6], 
brushless DC (BLDC) motors [13], and industrial robots [14]. Due to the nonholonomic constraints of the mobile robot, 
only limited results have been achieved in finite-time stabilization for the NWMR [15–17]. It is noteworthy that many 
of these results address finite-time stabilization without considering input constraints. 

Input constraints are critical factors in controller design. Ignoring these constraints during the controller design can 
result in degraded or even deteriorated control performance. Therefore, it is imperative to design controllers considering 
input constraints. Most importantly, addressing the finite-time control problem while considering input constraints is 
challenging. For NWMR stabilization, a switching strategy has been employed in [18], introducing state and input 
transformations to decouple the original system into a first-order integrator system and a second-order integrator system. 
However, when input constraints are considered, the input transformation makes it difficult to determine whether the 
original inputs exceed the allowable limits. To address this issue, this paper proposes a bounded finite-time controller 
for NWMR stabilization without introducing input transformation. 

Based on the above clarifications, the main contributions of this paper are summarized as follows: 

(1) Bounded finite-time controllers are proposed, using the hyperbolic tangent function tanh( ) , to stabilize the 

mobile robot and the upper-bound estimate for the closed-loop settling time is given explicitly. In addition, the 
level of the input constraints is given by parameters selected according to the actuator’s capacity. 

(2) For the proposed bounded finite-time controllers, a compact set contained in the domain of attraction is explicitly 
characterized, and a step-by-step guideline is provided for constructing this compact set. 
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The remainder of this paper is organized as follows. In Section 2, some useful lemmas are recalled and the problem 
formulation is conducted. Section 3 presents the main results. Section 4 presents the simulation results to validate the 
effectiveness of the proposed controllers. Section 5 concludes the paper. 

2. Preliminaries 

Consider a general system defined by 

�̇� = 𝑓(𝑥), 𝑥(0) = 𝑥, (1)

where 𝑥 ∈ ℝ is the system state, f:D→Rn represents a continuous nonlinear function on an open neighborhood 𝐷 ⊂

ℝ of the origin and 𝑓(0) = 0. 
In this section, some important lemmas are recalled and the problem formulation is conducted, which will facilitate 

the derivation of the main results. 

2.1. Some Useful Lemmas 

Lemma 1. [19] For a system (1), if there exists a continuous positive definite function V:D→R on an open 
neighborhood U D  of the origin and real numbers  0, 0,1c    such that �̇�(𝑥) + 𝑐𝑉ఘ(𝑥) ≤ 0, 𝑥 ∈ 𝑈\{0}, 

then the origin of the system (1) is finite-time stable and the settling time can be estimated as 𝑇(𝑥) ≤

𝑉ଵିఘ(𝑥)/𝑐(1 − 𝜌) for a given initial condition 0x U , where  0T x  is the settling time function. 

Lemma 2. [20] If 0 < 𝜆 = 𝜆ଵ/𝜆ଶ ≤ 1 and both 1 2,   are positive odd integers, then the following inequality holds: 

12x y x y
     . 

Lemma 3. [21] For any 𝑥 ∈ ℝ, 𝑦 ∈ ℝ, 𝑐, 𝑑 are positive real numbers and  , 0x y   is a real-valued function, the 

following inequality can be obtained 

|𝑥||𝑦|ௗ ≤
𝑐

𝑐 + 𝑑
Λ(𝑥, 𝑦)|𝑥|ାௗ +

𝑑

𝑐 + 𝑑
Λି


ௗ(𝑥, 𝑦)|𝑦|ାௗ . 

Lemma 4. [22,23] For any number 0r  , when |𝑥| ≤ 𝑟, the following inequality holds: 

tanh(𝑘ଶ𝑟)

𝑟
|𝑥| ≤ |tanh(𝑘ଶ𝑥)|, 

where 2 0k   is a constant. 

Lemma 5. [24] If xi ∈ R, i =1,2,…n and 0 1   is a real number, then the following inequality holds: 

(∑ |𝑥|
ୀଵ )ఒ ≤ ∑ |𝑥|ఒ

ୀଵ . 

2.2. Problem Formulation 

The kinematics of a mobile robot can be represented as 

ቐ

�̇� = 𝑣cos𝜃,
�̇� = 𝑣sin𝜃,

�̇� = 𝜔,

 (2)

where  ,x y  represents the coordinate of the center of mass,   is the robot’s orientation in the global frame, v  

and   are the linear and angular velocities, respectively. It is noteworthy that the kinematic model (2) is quite 
common in real-world applications and can often be found in the control of Automated Guided Vehicles (AGVs) and 
robot vacuum cleaners. 

It can be seen from (2) that there exists the following nonholonomic constraint: 
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�̇� sin 𝜃 − �̇� cos 𝜃 = 0. 
This nonholonomic constraint reflects the limitation of the robot’s freedom of motion: the robot can only move 

along its heading direction and cannot slide laterally. 
In this paper, considering control input constraints, the control objective is to design bounded controllers v  and 

  to stabilize (2) within finite time. In addition, provide an explicit upper-bound estimate for the closed-loop settling 
time and ensure that the saturation level of the control inputs can be predefined based on the actuator’s capacity. Finally, 
offers a guideline for constructing a compact set contained in the domain of attraction. 

3. Main Results 

In this section, a bounded finite-time control scheme is proposed to stabilize the mobile robot. Before designing 
the controllers v  and  , a classical transformation is introduced as follows: 

൝

𝑧ଵ = 𝜃,
𝑧ଶ = 𝑥sin𝜃 − 𝑦cos𝜃,
𝑧ଷ = 𝑥cos𝜃 + 𝑦sin𝜃.

 (3)

Under this transformation (3), the mobile robot system (2) can be written as 

1 1 2 2 3 3 2: , : , ,S z S z z z z v          (4)

where 1 2 3, ,z z z  are the system states,   and v  are the control inputs. It can be seen that through (3) the mobile 

robot (2) is decoupled into a first-order subsystem 1S  and a second-order subsystem 2S . Inspired by [18], a 

switching strategy is used here. Specifically, to achieve the finite-time stabilization of the mobile robot, one needs to 
finish the following two steps: 

(1) Set c  , where c  is a non-zero constant. Then (4) can be represented as 

2
1 1 2 2 3 3 2: , : , ,S z c S z z z c z cv       (5)

where 3 3z cz . One needs to design a bounded controller v  to stabilize 2S  within a finite time 𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯. 

(2) When 𝑡 > 𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯ , the second-order subsystem 2S  has been stabilized at the origin, i.e., 

2 3 2 30 0z z z z     . Then, at this instant, one needs to use a bounded finite-time controller   to stabilize 

the first-order subsystem 1S . 

From the analysis of the above two steps, design switching controllers as 

𝜔 = ቊ
𝑐, 𝑡 ≤ 𝑇ଵ,

−𝑘ఠଵtanh

 (𝑘ఠଶ𝑧ଵ), 𝑡 > 𝑇ଵ,

 (6)

𝑣 = ൝−
𝑘௩ଵ

𝑐
tanh

ଶ


ିଵ
ቀ𝑘௩ଶ൫𝑐𝑧ଷ


+ 𝑘௩ଷ


𝑧ଶ൯ቁ , 𝑡 ≤ 𝑇ଵ,

0, 𝑡 > 𝑇ଵ,
 (7)

where 1 1, vk k  are positive constants, and c  is a non-zero constant, and 𝑚, 𝑛 are positive odd constants satisfying 

m n . 1 < 𝑝 = 𝑝ଵ/𝑝ଶ < 2 and both 1p  and 2p  are positive odd integers satisfying 1 2p p , and 2 2 3, ,v vk k k  

are appropriate positive constants. Without any ambiguity, we use (⋅) for simplicity instead of  sign
p  , where 

𝑝 = 𝑝ଵ/𝑝ଶ. 
Before presenting the main results, Lemma 6 and Lemma 7 are given as follows. 

Lemma 6. For the subsystem 2S  in (5), if the initial states ൫𝑧ଶ(0), �̄�ଷ(0)൯ ∈ Ωఉ, where   is a given compact set, 

then 2S  can be finite-time stabilized by the bounded controller (7) at the origin. The controller parameters 𝑘௩ଵ, 2vk  

and 3vk  satisfy. 
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𝑘௩ଷ >
2

ଵି
ଵ
𝑝 + 1

1 + 𝑝
+

1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ



2 − 𝑝

1 + 𝑝
, (8)

𝑘௩ଵ

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


ቆ

tanh(𝑘௩ଶ𝑟)

𝑟
ቇ

ଶ


ିଵ

>
2

ଵି
ଵ


1 + 𝑝
+ 2

ଵି
ଵ
 +

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
+

(2𝑝 − 1)𝑐
ଶ(ଵା)
ଶିଵ 𝐸

ଶ൫మିଵ൯
(ଶିଵ)

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ

 (1 + 𝑝)

, (9)

where E  is a given positive constant, and r  is a positive constant satisfying 3
p

vr k E , and 2
1vk c E , and the 

control input is bounded by 

|𝑣| ≤
𝑘௩ଵ

|𝑐|
. (10)

Proof. The proof is divided into three steps. In the first two steps, the time derivative of the Lyapunov function is given. 

In Step 3, the finite-time stability of the closed-loop system 2S  and (7) is proved in the given domain  . 

Step 1: Substituting controller (7) into 2S  in (5) derives that 

൝
�̇�ଶ = �̄�ଷ,

�̇̄�ଷ = −𝑐ଶ𝑧ଶ − 𝑘௩ଵtanh
ଶ


ିଵ
ቀ𝑘௩ଶ൫�̄�ଷ


+ 𝑘௩ଷ


𝑧ଶ൯ቁ .

 (11)

Choose an appropriate Lyapunov function V  as 

𝑉 = 𝑉 + 𝑉ଵ, 

𝑉 =
1

2
𝑧ଶ

ଶ, 

𝑉ଵ =
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


න ൫𝑠 − �̄�ଷ

∗
൯

௭̄య

௭̄య
∗

ଶି
ଵ


𝑑𝑠, 

�̄�ଷ
∗ = −𝑘௩ଷ𝑧ଶ

ଵ


. 

(12)

Taking the time derivative of 0V  and using 

1
*
3 3 2

p
vz k z   derive 

�̇� = 𝑧ଶ(�̄�ଷ − �̄�ଷ
∗) + 𝑧ଶ�̄�ଷ

∗ 

≤ |𝑧ଶ||�̄�ଷ − �̄�ଷ
∗| − 𝑘௩ଷ|𝑧ଶ|

ଵା
ଵ
. 

(13)

From Lemma 2, for the term *
3 3z z , it can be derived that 

|�̄�ଷ − �̄�ଷ
∗| ≤ 2

ଵି
ଵ
ห�̄�ଷ


− �̄�ଷ

∗
ห

ଵ
. (14)

Denote *
3 3 3 3 2
p p p p

vz z z k z     , and then (13) can be written as 

�̇� ≤ −𝑘௩ଷ|𝑧ଶ|
ଵା

ଵ
 + 2

ଵି
ଵ
|𝑧ଶ|ห�̄�ଷ


− �̄�ଷ

∗
ห

ଵ
 

= −𝑘௩ଷ|𝑧ଶ|
ଵା

ଵ
 + 2

ଵି
ଵ
|𝑧ଶ||𝜁|

ଵ
. 

For the term |𝑧ଶ||𝜁|
భ

, from Lemma 3, it can be obtained 

|𝑧ଶ||𝜁|
ଵ
 ≤

𝑝

1 + 𝑝
|𝑧ଶ|

ଵା
ଵ
 +

1

1 + 𝑝
|𝜁|

ଵା
ଵ
. 

Then 0V  can be derived as 
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�̇� ≤ −𝑘௩ଷ|𝑧ଶ|
ଵା

ଵ
 + 2

ଵି
ଵ
 ቆ

𝑝

1 + 𝑝
|𝑧ଶ|

ଵା
ଵ
 +

1

1 + 𝑝
|𝜁|

ଵା
ଵ
ቇ. (15)

Step 2: Taking the time derivative of 1V  derives 

�̇�ଵ =
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


൫�̄�ଷ


− �̄�ଷ

∗
൯

ଶି
ଵ
�̇̄�ଷ +

�̄�ଷ

2
ଵି

ଵ


න ൫𝑠 − �̄�ଷ
∗

൯
௭̄య

௭̄య
∗

ଵି
ଵ


𝑑𝑠. (16)

Invoking (14), it is noted that 

�̄�ଷ

2
ଵି

ଵ


න ൫𝑠 − �̄�ଷ
∗

൯
௭̄య

௭̄య
∗

ଵି
ଵ


𝑑𝑠 ≤ |�̄�ଷ|ห�̄�ଷ


− �̄�ଷ
∗

ห. 

Then, substituting 3z  in (11) into (16) derives 

�̇�ଵ ≤ |�̄�ଷ||𝜁| +
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


𝜁

ଶି
ଵ
 �̇̄�ଷ 

= |�̄�ଷ||𝜁| +
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


𝜁

ଶି
ଵ
 ൭−𝑐ଶ𝑧ଶ − 𝑘௩ଵtanh

ଶ


ିଵ
(𝑘௩ଶ𝜁)൱, 

where *
3 3 2 3 3
p p p p

vz k z z z      has been used. 

For the term |�̄�ଷ||𝜁|, from (14) and Lemma 3, it can be derived that 

|�̄�ଷ||𝜁| ≤   |𝜁||�̄�ଷ − �̄�ଷ
∗| + |𝜁||�̄�ଷ

∗| 

≤ 2
ଵି

ଵ
|𝜁|

ଵା
ଵ
 + |𝑘௩ଷ𝜁||𝑧ଶ|

ଵ
 

≤ 2
ଵି

ଵ
|𝜁|

ଵା
ଵ
 +

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
|𝜁|

ଵା
ଵ
 +

1

1 + 𝑝
|𝑧ଶ|

ଵା
ଵ
. 

(17)

For the term 

1
2

2
2

pc z


 , from Lemma 3, it can be derived that 

−𝑐ଶ𝜁
ଶି

ଵ
𝑧ଶ ≤  ቆ𝑐

ଶ
ଶିଵ|𝑧ଶ|

ଶିଶ
ଶିଵ|𝜁|ቇ

ଶି
ଵ


|𝑧ଶ|
ଶ


ିଵ
 

≤  
2𝑝 − 1

1 + 𝑝
ቆ𝑐

ଶ
ଶିଵ|𝑧ଶ|

ଶିଶ
ଶିଵቇ

ଵା
ଵ


|𝜁|
ଵା

ଵ
 +

2 − 𝑝

1 + 𝑝
|𝑧ଶ|

ଵା
ଵ
. 

(18)
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From (17) and (18) and the fact |𝜁|
ଵା

భ

 = |𝜁|
భశమ

భ = 𝜁
భశమ

భ = 𝜁
ଵା

భ

, then 1V  can be written as 

�̇�ଵ ≤ −
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


𝜁

ଶି
ଵ
 ൭𝑘௩ଵtanh

ଶ


ିଵ
(𝑘௩ଶ𝜁)൱ 

+ ൮2
ଵି

ଵ
 +

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
+

(2𝑝 − 1)𝑐
ଶ(ଵା)
ଶିଵ |𝑧ଶ|

ଶ൫మିଵ൯
(ଶିଵ)

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ

 (1 + 𝑝)

൲ 𝜁
ଵା

ଵ
 

  + ൮
1

1 + 𝑝
+

1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ



2 − 𝑝

1 + 𝑝
൲ |𝑧ଶ|

ଵା
ଵ
. 

(19)

Step 3: In view of Lemma 4, we consider 

|𝜁| = ห�̄�ଷ


+ 𝑘௩ଷ


𝑧ଶห ≤ 𝑟, (20)

where r  is selected to satisfy 3
p

vr k E . In terms of (20), denote a domain containing the origin by 

𝐷 = ቄ(𝑧ଶ, �̄�ଷ) ∈ ℝଶ ቚห�̄�ଷ


+ 𝑘௩ଷ


𝑧ଶห ≤ 𝑟ቅ ⊂ ℝଶ. 

Choose a set as 

𝐵 = ൛(𝑧ଶ, �̄�ଷ) ∈ ℝଶห|�̄�ଷ| + 𝑘௩ଷ


|𝑧ଶ| ≤ 𝑟ൟ. 

rB D  is obvious from the fact ห�̄�ଷ


+ 𝑘௩ଷ


𝑧ଶห ≤ |�̄�ଷ| + 𝑘௩ଷ
 |𝑧ଶ| ≤ 𝑟 . Let 𝛼 = min

|௭̄య|ାೡయ


|௭మ|ୀ
𝑉 > 0 , where 

3
p

vr k E  to ensure that |𝑧ଶ| ≤ 𝐸. Take  0,   and let 

Ωఉ = {(𝑧ଶ, �̄�ଷ) ∈ 𝐵|𝑉 ≤ 𝛽}. 

Thus, it can be inferred that the set   is a compact set and rB D   . 

By Lemma 4, for the states in the domain D , the following inequality holds: 

tanh(𝑘௩ଶ𝑟)

𝑟
|𝜁| ≤ |tanh(𝑘௩ଶ𝜁)|. (21)

In addition, for the states in the domain rB , it can be known that |𝑧ଶ| ≤ 𝐸. 

From (15), (19), (21), and |𝑧ଶ| ≤ 𝐸, the time derivative V  can be written as 

�̇� = �̇� + �̇�ଵ 

   ≤ −𝑘௩ଷ|𝑧ଶ|
ଵା

ଵ
 + 2

ଵି
ଵ
 ቆ

𝑝

1 + 𝑝
|𝑧ଶ|

ଵା
ଵ
 +

1

1 + 𝑝
|𝜁|

ଵା
ଵ
ቇ 

  −
1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


𝜁

ଶି
ଵ
 ൭𝑘௩ଵtanh

ଶ


ିଵ
(𝑘௩ଶ𝜁)൱ + ൮2

ଵି
ଵ
 +

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
+

(2𝑝 − 1)𝑐
ଶ(ଵା)
ଶିଵ |𝑧ଶ|

ଶ൫మିଵ൯
(ଶିଵ)

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ

 (1 + 𝑝)

൲ 𝜁
ଵା

ଵ
 

+ ൮
1

1 + 𝑝
+

1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ



2 − 𝑝

1 + 𝑝
൲ |𝑧ଶ|

ଵା
ଵ
 

≤ − ൮𝑘 −
2

ଵି
ଵ
𝑝 + 1

−
1 2 − 𝑝

൲ |𝑧 |
ଵା

ଵ

 

(22)
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  − ൮
𝑘௩ଵ

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


ቆ

tanh(𝑘௩ଶ𝑟)

𝑟
ቇ

ଶ


ିଵ

−
2

ଵି
ଵ


1 + 𝑝
− 2

ଵି
ଵ
 −

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
−

(2𝑝 − 1)𝑐
ଶ(ଵା)
ଶିଵ 𝐸

ଶ൫మିଵ൯
(ଶିଵ)

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ

 (1 + 𝑝)

൲ 𝜁
ଵା

ଵ
. 

Denote 

𝜑 =  𝑘௩ଷ −
2

ଵି
ଵ
𝑝 + 1

1 + 𝑝
−

1

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ



2 − 𝑝

1 + 𝑝
, 

𝜑ଵ =  
𝑘௩ଵ

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ


ቆ

tanh(𝑘௩ଶ𝑟)

𝑟
ቇ

ଶ


ିଵ

−
2

ଵି
ଵ


1 + 𝑝
− 2

ଵି
ଵ
 −

𝑝𝑘௩ଷ

ଵା
ଵ


1 + 𝑝
 

−
(2𝑝 − 1)𝑐

ଶ(ଵା)
ଶିଵ 𝐸

ଶ൫మିଵ൯
(ଶିଵ)

ቀ2 −
1
𝑝

ቁ 2
ଵି

ଵ
𝑘௩ଷ

 (1 + 𝑝)

. 

Invoking conditions (8) and (9), it can be known that 0 1, 0    always holds. 

Recalling (12), it can be derived that 

𝑉ଵ ≤
1

ቀ2 −
1
𝑝

ቁ 𝑘௩ଷ


𝜁ଶ. (23)

In view of (23) and Lemma 5, the inequality (22) can be further represented as 

�̇� ≤ −2
ଵା
ଶ 𝜑𝑉

ଵା
ଶ

− ൭൬2 −
1

𝑝
൰ 𝑘௩ଷ


൱

ଵା
ଶ

𝜑ଵ𝑉ଵ

ଵା
ଶ

 

≤ −𝜑 ቆ𝑉

ଵା
ଶ

+ 𝑉ଵ

ଵା
ଶ

ቇ 

≤ −𝜑𝑉
ଵା
ଶ , 

(24)

where 

1
1 2
2

0 3 1

1
min 2 , 2

p
p p

pp
vk

p
  


 

      
  







 


 . 

Invoking Lemma 1, it can be derived that the settling time of the subsystem 2S  can be estimated as 

𝑇௦̄మ
≤

𝑉
ଵି

ଵା
ଶ ൫𝑧ଶ(0), �̄�ଷ(0)൯

𝜑 ቀ1 −
1 + 𝑝

2𝑝
ቁ

. 

From the definition of  , the relation rB D    and (24), it can be known that   is a positively 

invariant set. Choose   as the compact set where the initial states are included. Then, from Lemma 1, it can be 

proved that 2S  under (7) is finite-time stable at the origin. Due to the boundedness of  tanh  , the control input v  

satisfies (10). □ 

Remark 1. A systematic procedure for selecting the controller parameters in (7) and constructing the compact set   

is presented as follows: 
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(1) Set the constant value c . Choose a constant E  in |𝑧ଶ| ≤ 𝐸. It is obvious that E  represents a range in which 

the user desires the state 2z  locates. 

(2) Based on the actuator’s capacity, select a value for 1vk  satisfying 2
1vk c E  such that the control action could 

be large enough to counteract the effect of 2
2c z  in (5). 

(3) Choose appropriate parameters 3vk  and p  satisfying (8). 

(4) Select a large enough 2vk  and an appropriate r  satisfying (9) and 3
p

vr k E . 

(5) Once 3,vk p  and r  are selected, the set D  and rB , in the proof of Lemma 6, are determined. Then, calculate 

  and choose  0,  . Finally, one can construct the compact set  . 

After the subsystem 2S  has been stabilized at the origin, select the switching time as 

𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯ =
𝑉

ଵି
ଵା
ଶ ൫𝑧ଶ(0), �̄�ଷ(0)൯

𝜑 ቀ1 −
1 + 𝑝

2𝑝
ቁ

. (25)

When 𝑡 > 𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯, it is time to prove that the first-order subsystem 1S , under the bounded controller 

 , is finite-time stable at the origin. Actually, this problem, i.e., the first-order finite-time stabilization problem 
considering input constraints, has been addressed in our previous result [23]. Thus, the following lemma are presented 
here and the detailed proof can be found in [23]. 

Lemma 7. For the first-order subsystem 1S  in (4), design the control input as 

 1 2 1tanh .
m

nk k z     (26)

Then the subsystem 1S  with (26) is globally finite-time stable at the origin and the settling time function 1sT  

is bounded by  

𝑇௦ଵ(𝑧ଵ) ≤
𝑛�̄�


 𝑉௭ଵ

ି
ଶ (𝑧ଵ)

𝑘ఠଵ(𝑛 − 𝑚)tanh

 (𝑘ఠଶ�̄�)

, 

where 10z  represents the initial value of 1z , and 2
1 1zV z , and 2k  and r  are defined in Lemma 4. In addition, 

the control input is bounded by 

|𝜔| ≤ 𝑘ఠଵ. 

Based on Lemma 6 and Lemma 7, the main results are presented in the following. 

Theorem 1. For the mobile robot system (2), under the transformation (3), if the initial states satisfy 𝑧ଵ(0) ∈

ℝ, ൫𝑧ଶ(0), �̄�ଷ(0)൯ ∈ Ωఉ , where    3 30 0z cz , c  is a non-zero constant and   is a given compact set, then (2) 

can be finite-time stabilized by the switching controllers (6) and (7) at the origin and the switching time is given as 
(25). The settling time function  2 0T z  of the closed-loop system (2), (6) and (7) is bounded by 

𝑇ଶ(𝑧) ≤ 𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯ +
𝑛�̄�


 𝑉௭ଵ

ି
ଶ ൫𝑧ଵ(𝑇ଵ)൯

𝑘ఠଵ(𝑛 − 𝑚)tanh

 (𝑘ఠଶ�̄�)

, (27)

where 𝑧 = [𝑧ଵ(𝑇ଵ), 𝑧ଶ(0), �̄�ଷ(0)]். In addition, the control inputs are bounded by 

|𝜔| ≤ max{|𝑐|, 𝑘ఠଵ}, |𝑣| ≤
𝑘௩ଵ

|𝑐|
. (28)
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Proof. First, following the same line as the proof of Lemma 6, it is proved that the subsystem 2S  can be finite-time 

stabilized by the bounded controller (7) at the origin and the upper-bound estimate for the settling time of the subsystem 

2S , denoted as 1T , can be provided explicitly. Then, select 1T  as the switching time. For the subsystem 1S , since 

1z c , when 1t T , there is no finite-time escape phenomenon. Next, invoking Lemma 7 originating from [23], it can 

be proved that the subsystem 1S  can be globally finite-time stabilized by (6) at the origin. It is noted that 

   10 1 1 1 10z z T z cT    and thus the settling time function 2T  is bounded by (27). Under the transformation (3), 

it is obvious that 1 2 3 0 0z z z x y        . In addition, it can be easily checked that the control inputs are 

bounded by (28). □ 

To help understand how to implement the control algorithm in a NWMR, the pseudocode and schematic are 
provided below in Algorithm 1 and Figure 1, respectively: 

Algorithm 1: Finite-Time Stabilization of a NWMR With Input Constraints 
1 Input the initial states 𝑥(0), 𝑦(0), 𝜃(0); 

2 
Based on the guideline in Remark 1 and the actuator’s capacity, select a set of controller parameters related to controller 
(7): 𝑐, 𝐸, 𝑘௩ଵ, 𝑘௩ଷ, 𝑝, 𝑘௩ଶ, 𝑟 and construct the given compact set 𝛺ఉ; 

3 From 𝑥(0), 𝑦(0), 𝜃(0), 𝑐, Equation (3) and �̄�ଷ = 𝑐𝑧ଷ, compute 𝑧ଶ(0) and �̄�ଷ(0); 
4 If ൫𝑧ଶ(0), �̄�ଷ(0)൯ ∈ 𝛺ఉ, go to 5. Otherwise, go back to 2 to adjust the controller parameters; 
5 From (25), compute the switching time 𝑇ଵ, and then select the controller parameters 𝑘ఠଵ, 𝑘ఠଶ, 𝑚, 𝑛, �̄�; 
6 From (27), compute the explicit upper-bound estimate for the closed-loop settling time; 
7 Output the controller 𝑣, 𝜔 and the closed-loop settling time 𝑇ଶ. 

 

Figure 1. The schematic of the proposed algorithm. 
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From Lemma 6, Lemma 7, and Theorem 1, it is evident that the finite-time stabilization of a NWMR with input 
constraints involves two steps. In the first step, based on a constant controller 𝜔 = 𝑐, one needs to design a bounded 
finite-time controller 𝑣 to stabilize the second-order subsystem 𝑆ሜଶ in (5), while also computing the upper-bound 
estimate of the settling time for subsystem 𝑆ሜଶ under controller (7). In the second step, the upper-bound estimate 
obtained in the first step is selected as the switching time. Subsequently, a bounded finite-time controller 𝜔 is designed 
to stabilize the first-order system 𝑆ଵ in (4). Through these two steps, an explicit upper-bound estimate of the closed-
loop settling time is derived, as shown in (27). Furthermore, due to the boundedness of tanh(⋅), the controllers 
𝜔, 𝑣 can be bounded by the controller parameters, as described in (28), which are selected in advance based on the 
actuator’s capacity. It is important to note that the upper-bound estimate of the settling time for the subsystem 𝑆ሜଶ under 
(7) is relatively conservative. As a result, the switching time is also conservative. Therefore, reducing this conservatism 
will be a key focus of future research. 

4. Simulation Results 

In this section, for the proposed bounded finite-time switching controllers (6) and (7), the simulation results are 
presented to validate their effectiveness. In addition, our method is compared with the switching method in [18], which 
has been wildly used in recent studies on nonholonomic systems [25–28]. 

For a fair comparison, the initial conditions are set as [𝑥(0), 𝑦(0), 𝜃(0)]் = [3, −1, −0.5]் . Here, for our 
controllers (6) and (7), we choose the controller parameters as 𝑐 = 0.5, 𝐸 = 1, 𝑘ఠଵ = 3, 𝑘ఠଶ = 1, 𝑚 = 1, 𝑛 = 3, �̄� =

620,  𝑘௩ଵ = 7, 𝑘௩ଶ = 10, 𝑘௩ଷ = 1.245, 𝑝 = 27/17, 𝑟 = 1 . From (25), the switching time is calculated as 
𝑇ଵ൫𝑧ଶ(0), �̄�ଷ(0)൯ = 1236.1𝑠. In addition, from Step 3 in the proof of Lemma 6, it can be obtained that 0.0343  . 

Then we choose 0.034  . It can be checked that the initial conditions are included in the given compact set  . 

The responses of the states 𝑥, 𝑦 and   are shown in Figure 2a,b, respectively. The control inputs   and v  are 
shown in Figure 3. 

(a) (b) 

Figure 2. State trajectories of the mobile robot using the proposed algorithm. (a) State trajectories 𝑥 and 𝑦; (b) State trajectories  . 

From Figure 2a,b, it can be seen that the state trajectories 𝑥, 𝑦 converge to zero at about 2𝑠 and   converges to 
zero at about 1440𝑠. It is evident that all states converge to zero in finite time. In addition, from (27), it can be computed 
that the upper-bound estimate of the closed-loop settling time is 1545.2828𝑠. It should be noted that, before the 
switching time  1 0T z , since   is a non-zero constant c , the value of |𝜃|  increases continuously. When 

 1 0t T z , the angle   is stabilized by the controller (6) in a finite time. From Figure 3, invoking (28), it can be 

seen that the control inputs are bounded by the prescribed parameters, i.e., |𝜔| ≤ 3 rad/s and |𝑣| ≤ 14 m/s. 
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Figure 3. Stabilization inputs   and 𝑣. 

Using the switching method in [18], for the nonholonomic system (2), introduce the following state transformation 
and input transformation: 

⎩
⎪
⎨

⎪
⎧

𝑧ଵ = 𝜃,
𝑧ଶ = 𝑥sin𝜃 − 𝑦cos𝜃,

𝑧ଷ = 𝑥cos𝜃 + 𝑦sin𝜃，
𝑣ଵ = 𝜔 ,

𝑣ଶ = 𝑣 − 𝑧ଶ𝜔,

 (29)

where the subscript D denotes the corresponding variables from Defoort’s paper [18], distinguishing them from the 
related variables used in this paper. 

Under this transformation (29), the mobile robot system (2) can be written as 

𝑆ଵ: �̇�ଵ = 𝑣ଵ, 𝑆ଶ: �̇�ଶ = 𝑣ଵ𝑧ଷ, �̇�ଷ = 𝑣ଶ . 

Design a controller as 

𝑣ଵ = ൜
𝑐, 𝑡 ≤ 𝑇ଵ,

−𝛼ଷ|𝑧ଵ|ଶsign(𝑧ଵ) − 𝛽ଷsign(𝑧ଵ), 𝑡 > 𝑇ଵ,
 

𝑣ଶ = ቐ−
𝛼ଵ + 3𝛽ଵ𝑧ଶ

ଶ

2𝑐
sign(𝑠) −

|𝛼ଶ𝑠 + 𝛽ଶ|𝑠|ଷsign(𝑠)|
ଵ
ଶsign൫𝛼ଶ𝑠 + 𝛽ଶ|𝑠|ଷsign(𝑠)൯

𝑐
,  𝑡 ≤ 𝑇ଵ,

0, 𝑡 > 𝑇ଵ,

 

where 𝑠 = 𝑐𝑧ଷ + ||𝑐𝑧ଷ|ଶsign(𝑐𝑧ଷ) + 𝛼ଵ𝑧ଶ + 𝛽ଵ|𝑧ଶ|ଷsign(𝑧ଶ)|
భ

మsign൫|𝑐𝑧ଷ|ଶsign(𝑐𝑧ଷ) + 𝛼ଵ𝑧ଶ + 𝛽ଵ|𝑧ଶ|ଷsign(𝑧ଶ)൯. 
We choose the controller parameters as 𝑐 = 0.5, 𝛼ଵ = 𝛽ଵ = 0.1, 𝛼ଶ = 𝛽ଶ = 1.5, 𝛼ଷ = 𝛽ଷ = 0.1, and then from 

𝑇ଵ =
ଶ

√ఈమ
+

ଶ

ඥఉమ
+

ଶ√ଶ

√ఈభ
+

ଶ√ଶ

ඥఉభ
, the switching time is computed as 𝑇ଵ = 21.1545𝑠. The responses of the states 𝑥 , 𝑦 

and 𝜃 are shown in Figure 4a,b, respectively. The control inputs 𝜔 and 𝑣 are shown in Figure 5. 
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(a) (b) 

Figure 4. State trajectories of the mobile robot using the method in [18]. (a) State trajectories 𝑥 and 𝑦; (b) State trajectories 𝜃. 

 

Figure 5. Stabilization inputs 𝜔 and 𝑣. 

By comparing Figure 3 and Figure 5, it is evident that the control inputs   and 𝑣, in this paper, are bounded by 
(28), with computed values |𝜔| ≤ 3 rad/s and |𝑣| ≤ 14 m/s. However, for the same initial states, since the method in 
[18] does not account for input constraints, the input signals 𝜔 and 𝑣 exceed 3 rad/s and 14 m/s, respectively, 
and even |𝜔| > 10 rad/s. In practice, excessive input values that exceed the actuator’s limits can potentially damage 
the actuator. Therefore, it is crucial to consider input constraints in control design. It is important to note that this 
comparison focuses solely on whether the constraint level of the control input can be pre-defined by parameters, and 
whether the designed controllers can be bounded by these predefined values. Thus, the comparison above demonstrates 
the validity of the proposed algorithm in this paper. In addition, from Figures 2b and 4b, it is clear that the switching 
time in this paper is significantly longer than that in [18]. Consequently, achieving finite-time stabilization of a NWMR 
with input constraints while reducing the switching time remains a key direction for our future research. 

5. Conclusions 

In this paper, the finite-time stabilization control problem for a nonholonomic wheeled mobile robot with input 
constraints is addressed. Specifically, based on the bounded odd function tanh( ⋅), bounded finite-time controllers are 
proposed to stabilize the mobile robot. In addition, the upper-bound estimate for the closed-loop settling time is provided 
explicitly and the level of input constraint is presented by parameters dependent on actuator’s capacity. Using 
appropriate Lyapunov functions, a comprehensive finite-time stability analysis is conducted. Moreover, a guideline is 
provided to clarify how to choose the controller parameters and construct a compact set contained in the domain of 
attraction. Finally, the effectiveness of the proposed controllers is validated through simulation results. 
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