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ABSTRACT: Fibrotic diseases such as pulmonary fibrosis, hepatic fibrosis, chronic kidney disease, and cancer are marked by an 
excess accumulation of extracellular matrix (ECM). This process involves the assembly of the ECM protein fibronectin (FN) into 
insoluble fibrils. FN fibril assembly is highly linked with integrin signaling, TGF-β1 signaling, and cellular contractility. This 
linkage consists of four stages: (i) Integrin binding and contractile forces facilitate the assembly of FN into insoluble fibrils; (ii) 
assembled FN fibrils bind the large latent complex of TGF-β1; (iii) activation of TGF-β1 from the latent complex requires integrin 
binding and contractile forces; and (iv) active TGF-β1 increases contractility, integrin expression, and FN assembly. The 
significance of integrin signaling and TGF-β1 signaling in fibrotic diseases is well-appreciated, as numerous clinical trials targeting 
integrins or TGF-β1 have been reported. However, despite a clear effort to target integrins and TGF-β1 clinically, the vast majority 
of these trials have failed or have been terminated. These suggest a potentially incomplete understanding of the synergistic effects 
of these pathways. Here we present a review of both FN fibrillogenesis and TGF-β1 signaling, as well as current opinions of under-
explored areas of crosstalk related to these pathways that may explain why these have not been successfully targeted in many 
disease states including fibrosis. 
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1. Introduction 

1.1. TGF-β1 Activation and Signaling 

One of the most prominent inducers of fibrosis is the inflammatory cytokine Transforming Growth Factor-β1 
(TGF-β1). In addition to its role as a modulator of immune system function (reviewed in [1]), TGF-β1 has been shown 
to play a significant role in a host of pathologies, including cancer tumorigenesis and metastasis, chronic kidney disease, 
idiopathic lung disease, cardiac disease, osteogenesis imperfecta, and Parkinson’s disease [2–7]. It is expressed in 
almost all tissues in the body (reviewed in [8]), and its expression is regulated by numerous signaling pathways 
(reviewed in [9]).  

TGF-β1 and its two related isoforms, TGF-β2 and TGF-β3, are secreted as latent complexes comprised of 3 
components: a mature TGF-β ligand non-covalently bound to a latency-associated peptide (LAP), which is then bound 
to a latent TGF-β binding protein (LTBP). LTBP is able to bind to the extracellular matrix (ECM) protein fibronectin 
(FN) through cryptic growth factor binding sites on tensed FN, acting as a reservoir for latent TGF-β1 [10–17]. Active 
TGF-β1 can be released from the latent complex via decreases in pH, proteolysis by extracellular enzymes such as 
matrix metalloproteinases, or traction force-mediated opening of the LAP through αv integrins, most notably integrins 
αvβ1/3/6/8 [12,17–19]. These integrins are often clustered into large enzymatic complexes known as focal adhesions 
that coordinate extracellular attachments with the intracellular cytoskeleton (Figure 1). It is through these focal 
adhesions that intracellular, acto-myosin based traction forces are transduced to manipulate the ECM, regulate cell size, 
and coordinate cellular motility [12,14,20–22]. 
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Figure 1. Assembly of Fibronectin into Fibrils. Fibronectin is assembled into fibrils via an integrin-dependent mechanism. 
Integrins transmit actomyosin forces to soluble FN, which stretches the FN to reveal cryptic FN-FN binding sites. Binding of 
soluble FN to the stretched FN creates new integrin binding sites that facilitates the assembly of an insoluble FN fibril. Created 
with Biorender.com. 

Active TGF-β ligands signal through a complex of cell surface receptors, comprising type I (TβRI), type II (TβRII), 
and type III (TβRIII) serine/threonine kinase receptors. During TGF-β signal transduction, a TGF-β ligand first binds 
to either a TβRII dimer or a pre-formed complex of a TβRI dimer and an RII dimer on the extracellular cell surface 
[23–25]. Ligand-bound TβRII then initiates recruitment of TβRI to form a heterotetramer complex. Constitutively active 
TβRII then phosphorylates the catalytic domain of TβRI on the cytoplasmic side, initiating downstream signal 
transduction [23,24]. TβRIII, also known as beta-glycan, can enhance the binding of TGF-β ligands to TβRII and is 
capable of complexing TβRI & II receptors together, serving as a co-receptor to increase TGF-β signaling in certain 
cell types [26–28]. 

While TGF-β2 has been implicated in fibrotic processes and TGF-β3 has been primarily identified as playing a 
role in physiological processes such as embryonic development, the TGF-β1 isoform has been characterized in the 
greatest detail in disease states [29]. TGF-β1 demonstrates the highest systemic abundance in the human body, with 
increases in expression associated with poor breast cancer prognosis and metastasis to bone, lymph, and pleural tissues 
[30–32]. It has also been implicated in Parkinson’s disease [3], fibrotic diseases [33], and osteogenesis imperfecta [7]. 
Each TGF-β isoform exhibits differences in ligand activation and receptor binding. TGF-β2 induces signals with 100–
1000-fold less potency than TGF-β1 and TGF-β3 in cells that lack the noncatalytic TGF-βRIII (beta-glycan) co-receptor 
[23] and requires a preformed complex of TGF-βRI & TGF-βRII for sufficient ligand-receptor complexing [25,27]. 
TGF-β2 also lacks the typical integrin adhesion motif, RGD, and instead is only able to undergo integrin-mediated 
activation via an alternative recognition motif that is only recognized by integrin αvβ6 [34,35]. TGF-β3 has been shown 
to have a slightly greater affinity for TGF-βRII [23] than TGF-β1. TGF-β1 and 2 are known to promote scar formation 
during wound healing, while TGF-β3 promotes scar-less wound healing, indicating potentially divergent downstream 
signaling from TGF-β3 [36,37]. 

TGF-β signaling induces multiple downstream signaling events. In canonical TGF-β1 signaling, SMAD proteins 
are phosphorylated by the cytoplasmic domain of TβRI. SMAD2 and SMAD3 are the primary phosphorylation targets; 
these complex with SMAD4 and translocate to the nucleus to regulate target gene expression [24–27]. Noncanonical 
signaling also relies on signaling downstream of TβRI activity, but instead activates the mediators of the Rho family, 
NF-ΚB, Ras, MAPK, and PI3K signaling pathways to direct cytoskeletal rearrangement, protein synthesis, proliferation, 
and apoptosis [38,39].  

1.2. Fibronectin Fibrillogenesis and Regulation 

A primary component of fibrotic tissue is fibronectin (FN) [40,41], which serves both structural and signaling roles 
in de novo tissue morphogenesis. FN fibrils serve as scaffolds for the assembly of a variety of other ECM components, 
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including collagens and elastins, facilitating the formation and maturation of new tissue [42–44]. This is an important 
point in fibrosis research: studies have shown that cells lacking FN are unable to assemble Collagen I fibrils in vivo 
[45–47]. This would suggest that inhibition of FN should also inhibit Collagen I assembly and, as such, serve as a novel 
target for fibrotic treatment. Indeed, treatment with an FN inhibitor in a unilateral ureteral obstruction (UUO) mouse 
model of kidney fibrosis demonstrated a significant reduction in Collagen I, Collagen III, and fibronectin in UUO 
kidneys [48].  

In addition to serving roles as a structural element and a scaffold for Collagen I, assembled FN fibrils are also 
capable of binding upwards of 40 growth factors, including platelet-derived growth factors (PDGFs), fibroblast growth 
factors (FGFs), and of particular interest, latent TGF-β1 [10,15,41,49], making it a crucial regulator of cellular signal 
transduction in fibrotic foci. As such, FN fibrils not only dictate the mechanical structure of the fibrotic ECM, but also 
play a key role in regulating signaling cues to resident cells. 

FN is secreted as a soluble dimer that binds primarily to cell-surface integrin receptors, most notably integrins 
α5β1 and αvβ3. These integrins transmit actomyosin contractile forces to the FN molecule, which stretches FN into an 
open conformation that facilitates FN-FN binding [42,43]. This cycle of stretching to expose new binding sites and 
subsequent incorporation of soluble FN leads to the assembly of insoluble fibrils in a process known as fibrillogenesis 
[42,43,50] (Figure 1).The polymerization of FN into insoluble fibrillar networks serves as a scaffold for cellular 
adhesion, migration, and signaling, allowing for the subsequent association of other ECM constituents like collagens 
and elastins [43,49,51]. Further processing of FN fibrils includes both cleavage by proteolytic enzymes, which results 
in soluble fragments that exert their own cellular signaling function [52,53] and cross-linking by matricellular enzymes 
to reinforce attachments to both other FN fibrils and other ECM components. Both cleavage and cross-linking of FN 
fibrils dictate the bulk mechanical properties of the local ECM (reviewed in [43]). 

1.3. Role of Integrins in FN Fibrillogenesis and TGF-β1 Activation 

A common thread between TGF-β1 activation and FN fibrillogenesis is that both require binding to transmembrane 
integrins and subsequent transmission of actomyosin-based contractile forces. For FN fibrillogenesis, both α5β1 and 
αvβ3 integrins bind to the RGD sequence on the 10th Type III domain of FN [54]. Transmission of actomyosin forces 
via these integrins stretches FN from a compact conformation to expose cryptic FN-FN binding sites that facilitate FN 
fibril formation [55]. While both α5β1 and αvβ3 integrins bind to FN, fibrillogenesis is primarily driven via α5β1 
integrins [43]. For TGF-β1 activation, αv-containing integrins bind to the RGD sequence on the latency-associated 
peptide (LAP) of TGF-β1. Transmission of actomyosin forces via these integrins stretches LAP to release the active 
TGF-β1 ligand, allowing it to bind to TGF-β receptors and facilitate downstream signaling [56]. 

1.4. Targeting Integrins and TGF-β1 Therapeutically 

The clinical significance of FN fibrillogenesis, TGF-β1 signaling, and integrin signaling in fibrotic diseases and 
cancer is evident by the vast number of clinical trials that have attempted to target these pathways [2–4,57–62]. Over 
90 integrin-based therapeutics are under investigation, but only seven have been successfully marketed [58]. Targeting 
integrins has been proposed as a therapeutic approach to cancer [59,63] including glioblastoma [64], inflammatory 
bowel disease [57], cardiovascular disease [60], dry eye disease [60], idiopathic pulmonary fibrosis [62], and 
scleroderma fibrosis [65], amongst others. Similarly, targeting TGF-β has been a therapeutic target for a host of diseases, 
including cancer [2,4,5], Parkinson’s disease [3], and osteogenesis imperfecta [7]. 

1.5. Underexplored Aspects of TGF-β-Integrin-FN Signaling 

The substantial number of clinical trials that have targeted either integrins or TGF-β1 indicate the significant role 
and pervasiveness of these pathways in fibrotic diseases; however, the large number of failures of these clinical trials 
[59,63,66] suggests an incomplete understanding of their complex signaling and crosstalk. Where are the shortcomings 
in understanding these signaling pathways? Here, we discuss three areas that may lie at the heart of this issue: (i) 
divergent regulation of TGF-β isoform expression in response to exogenous TGF-β1 depending on cell type; (ii) 
divergent FN expression and assembly responses to exogenous TGF-β1 depending on cell type and matrix 
microenvironment; and (iii) downstream integrin signaling in response to TGFβ/LAP binding to integrins. 
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1.6. Divergent Regulation of TGF-β Isoforms 

Exposure to exogenous TGF-β1 often leads to upregulation of endogenous expression of TGF-β isoforms, which 
has been hypothesized as an autocrine positive feedback loop that drives sustained TGF-β1 signaling and FN 
fibrillogenesis [67–69]. However, this response appears to be cell-type specific. Several studies have shown an 
upregulation of autocrine TGF-β1 in MDCK renal epithelial cells, MCF10 human mammary epithelial cells, and HK-
2 human renal proximal tubular epithelial cells during TGF-β1-induced EMT [68,70,71], while others have shown 
no significant increase in autocrine TGF-β1 in MCF10A human mammary epithelial cells in response to pathological 
levels of exogenous TGF-β1 [69]. A possible theory to explain this discrepancy may be that TGF-β1 activity may 
predominantly be upregulated by increased accessibility of previously deposited latent TGF-β1 embedded in the 
ECM, which becomes increasingly accessible via upregulation of actomyosin contractility and matrix remodeling 
after initial TGF-β stimulation. Other studies have shown an upregulation of endogenous TGF-β2 in response to 
TGF-β1 in both MCF10A human mammary epithelial cells [69] and HCC 1954 human breast cancer cells [18], while 
other studies have shown a downregulation of TGF-β2 in response to TGF-β1 in MDA-MB-231 triple-negative breast 
cancer cells [69]. Interestingly, Barney et al. demonstrated that upregulation of TGF-β2 and FN correlated with cell 
survival in an in vitro model of tumor dormancy [18], while other studies indicated that TGF-β2 is elevated to 
significant levels in TNBC [72,73]. 

Divergent regulation of TGF-β isoforms may be regulated through several mechanisms. One avenue may be via 
posttranscriptional regulation of TGF-β translation. Liu et al. have proposed a mechanism of competitive endogenous 
FN mRNA expression, in which FN is transcribed solely as a mechanism to competitively bind miRNAs that inhibit 
TGF-β expression, thus upregulating TGF-β expression [67]. Another avenue for divergent responses to exogenous 
TGF-β1 is altered regulation of TGF-β receptors. As with most receptor-ligand pairs, TGF-β signaling is regulated by 
the internalization of receptors on the surface (reviewed in [74]). Specific regulation of receptors outside of clathrin-
mediated mechanisms may play a key role in regulating divergent responses to TGF-β1. For example, β-arrestin2, which 
typically binds to 7-Transmembrane (7TM) receptors to drive internalization and inactivation of G-Protein Coupled 
Receptors, also mediates endocytosis of TβRIII through a similar mechanism to downregulate TGF-β1 signaling [75]. 
Collagen-α2β1 interactions downregulate TβR expression in a FAK-dependent mechanism in osteoblasts [76]; this 
further points to cross-talk between integrins and TGF-β signaling. The microRNA miR-150 drives expression of TGF-
βRII in intra-epithelial lymphocytes to increase responsiveness to TGF-β1 [77]. 

1.7. Divergent FN Expression and Assembly 

Previous studies have shown that mechanical activation of TGF-β1 requires tethering of the large latency complex 
to FN fibrils [10]. This is presumably due to the need for a resistive force on the LLC to facilitate mechanically induced 
opening of the LAP-TGF-β complex. Another avenue for divergent responses to exogenous TGF-β1 is distinct 
regulation of FN fibrillogenesis; inhibiting FN fibrillogenesis with a small bacterial wall peptide has been shown to 
inhibit TGF-β1 signaling [10]. The complexity of this aspect of FN-TGF-β1 crosstalk is amplified by the fact that FN 
fibrillogenesis requires both the secretion of soluble FN and the assembly of soluble FN into fibrils. This two-step 
process is not necessarily mediated by the same cell populations: one cell type could upregulate secretion of soluble FN 
while another could upregulate FN fibril assembly (and a third could upregulate expression of TGF-β1) (Figure 2). 
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Figure 2. Divergent sources of soluble FN, FN fibrillogenesis, and TGF-β1 expression in tissue microenvironments. A critical 
aspect of the complexity of FN/Integrin/TGF-β1 crosstalk is the potential for multiple cell types/cell phenotypes to contribute to 
the process. Multiple cell types, including immune cells, resident fibroblasts, and resident epithelial cells, respond to exogenous 
TGF-β1 by upregulating expression of soluble FN and endogenous, autocrine TGF-β1 (aTGF-β1). Transformed cells, including 
activated myofibroblasts and epithelial cells that have undergone Epithelial-Mesenchymal Transition (EMT), will assemble FN into 
fibrils. These fibrils can bind soluble TGF-β1, which can then be activated via integrin-transmitted contractile forces. Figure created 
with BioRender.com. 

Assembly of FN fibrils seems to be more tightly regulated than expression of soluble FN, as there are many cell 
types and microenvironmental variables that drive increased expression of soluble FN without increased FN 
fibrillogenesis. Increased expression and secretion of soluble FN has been observed in MDA-MB-231 breast cancer 
cells [69], astrocytes exposed to an in vitro stroke model [78], hepatic stellate cells in a fibrogenesis animal model [79], 
HK-2 human renal proximal tubular epithelial cells in response to TGF-β1 [71], human lung epithelial cells in response 
to TGF-β1 [80], and CD14+ monocytes in systemic sclerosis [81]. These increases in soluble FN expression do not 
necessarily correlate with increased FN fibrillogenesis: for example, despite significant increases in FN secretion in 
response to TGF-β1, MDA-MB-231 cells do not readily assemble FN fibrils in 2D cultures [69], but do assemble fibrils 
in 3D assays [82]. Non-malignant MCF10A breast epithelial cells upregulate both FN secretion and assembly [10] in 
2D. Hypoxia upregulates FN secretion in HK2 human kidney cells and A549 human lung adenocarcionma cells, but 
does not upregulate FN fibrillogenesis [83]. FN assembly is increased in mouse and human embryonic fibroblasts (3T3 
and WI-38) in response to TGF-β1 [84,85]. FN assembly is also highly influenced by the abundance of certain ECM 
proteins in the matrix; culturing cells on laminin-coated surfaces increases FN fibrillogenesis in both MCF10A human 
epithelial cells [69] and NRK-49F rat renal fibroblasts (unpublished). 

There are several potential mechanisms that could explain how cells facilitate FN fibrillogenesis independent of 
FN expression and secretion. TGF-β1 induces an increase in surface transglutaminase in mouse and human embryonic 
fibroblasts (3T3 and WI-38), which co-localizes with α5β1 integrins and may play a role in localizing soluble FN to 
integrins on the cell surface [84]. TβRIII promotes epithelial cell attachment to FN by trafficking α5β1 integrins to 
nascent adhesions [86]; this effect is independent of exogenous β1. Inhibiting α4 integrin disrupts the binding of the 
EDA domain of FN to integrins; this results in reduced contractility and reduced FN fibrillogenesis [87]. Note that the 
EDA domain is not present in all isoforms of FN; it is an alternatively spliced domain that is not present in systemic FN 
expressed in hepatocytes (“plasma FN”) but is often present in locally expressed FN (“cellular FN”). As such, divergent 
expression of transglutaminase, TβRIII, α4 integrin, and/or EDA-containing isoforms of FN could play a role in 
divergent FN fibrillogenesis responses to exogenous TGF-β1. 
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1.8. Downstream Integrin-LAP Signaling 

Another potentially important and under-explored avenue of the TGF-β1/FN/Integrin axis is the interaction 
between the TGF-β1 LAP protein and integrins (Figure 3). While the importance of this binding is well appreciated and 
has been explicitly targeted in clinical trials, the focus has been on the role of integrin-LAP binding in facilitating 
mechanical forces that physically release the active TGF-β ligand. However, LAP-integrin binding may also serve as a 
traditional receptor-ligand binding event that triggers signaling events downstream of integrin ligation. Results of 
several studies suggest that this mechanism may play a key role. Studies from our group found that knocking out TGF-
β1 resulted in impaired FN fibrillogenesis in MCF10A human mammary epithelial cells, which was not recovered by 
the addition of soluble TGF-β1. However, addition of the empty LAP protein to TGF-β1 knock out cells did partially 
recover FN fibrillogenesis [62]. RGD-binding integrins have the greatest affinity for LAP in its empty conformation 
(that is, with no TGF-β ligand contained within it), highlighting a potential role in modulating cellular signaling. Prior 
studies have demonstrated that empty LAP facilitates keratinocyte adhesion [88] and modulates monocyte chemotaxis 
and inflammation response [89]. 

 

Figure 3. Crosstalk between integrin signaling, TGF-β1 signaling, and Fibronectin. Integrins bind to the Large Latent Complex 
(LLC) that contains the active TGF-β ligand; the LLC can either be soluble or bound to FN fibrils. Bound LLC is stretched via 
actomyosin forces that open the LLC and release the active TGF-β ligand. This ligand can then bind TGF-β receptors. Integrins 
bound to soluble LLC, matrix-bound LLC, and/or opened LLC may drive intracellular signaling that augments signaling 
downstream of the TGF-β1 ligand. Created with BioRender.com. 

2. Conclusions 

Crosstalk between integrins, FN, and TGF-β1 is critical for both physiological processes, including wound healing, 
and enbryogenesis and pathological scenarios, including fibrotic diseases and cancer. While numerous therapeutic 
agents have been developed to target these, most have failed. The complex interactions described here lead to an unclear 
path to specifically target the role of these signaling moieties in disease states without disrupting their role in healthy 
environments. We believe that the answer to this conundrum lies in three areas: (i) identify mechanisms that specifically 
regulate TGF-β1 responses, including modulation of receptors; (ii) identify mechanisms that regulate FN fibrillogenesis, 
and specifically target this in pathological environments (as has been attempted by [48]), and (iii) identify signaling 
events downstream of LAP-integrin binding that may be specifically critical to long-term pathological fibrotic signaling, 
given the absence of LAP in immune cell-derived TGF-β1. 
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