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ABSTRACT: To solve the problem of the accelerated deterioration of calcium aluminate (CAC)-bonded alumina-magnesia 
refractory castables during the secondary refining process, the development of cement-free binders has emerged as one significant 
research field of castables. The hydration behavior, curing mechanism, and properties of the most recent research on cement-free 
binders are compared in this paper. The problems and the modification of each binder of recent research are summarized. High-
temperature performance of the castables bonded by traditional hydraulic cement-free binders (ρ-Al2O3 and activated MgO) is 
outstanding, explosive spalling resistance of the castables bonded by sol binders (silica sol, alumina sol) is good, and the properties 
of the castables bonded by novel organic hydratable binder (hydratable magnesium citrate) combine the advantages of these two 
binders above, but the mid-temperature mechanical strength is low. Furthermore, alumina-magnesia castables bonded by organic-
composited inorganic cement-free binders are expected to be a future domain. 

Keywords: Cement-free binder; Refractory castables; Hydration process; Gas permeability; High-temperature performance 
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1. Introduction 

Alumina-magnesia refractory castables possess excellent high-temperature mechanical properties and corrosion 
resistance. They are mainly employed as the working layer of the ladle lining for steel production. Additionally, they 
can also be utilized for the overall lining of ladle permeable plugs, argon-blowing lances, or powder spraying lances, et 
al. [1,2]. The alumina-magnesia castables are made by mixing continuously graded Al2O3 aggregate (such as fused 
white corundum, tabular corundum, or fused high alumina corundum), Al2O3 fine powder, MgO fine powder, or 
magnesia-alumina spinel powder, modified fine powder, additives, and binders with water, followed by casting and 
molding. The microstructure of the castables is illustrated in Figure 1 [2]. The in-situ magnesia-alumina spinel formed 
by the reaction between Al2O3 and MgO components enhanced the slag corrosion resistance of the castables, which are 
mainly used in ladle sidewalls and impact pads to resist slag infiltration, corrosion, and local thermal shock [3]. However, 
it is necessary to control the MgO content in the range of 6–8 wt.% to prevent excessive linear expansion. The castables 
with the direct addition of magnesia-alumina spinel powder with the content of 10–20 wt.% are suitably applied in the 
bottom of the ladle due to the good volume stability and high strength [4]. It is utilized to withstand the impact of 
pouring liquid steel and to bear the load of steel and slag. 
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Figure 1. Microstructure of refractory castables [1]. Reprinted with permission from Ref. [1] Copyright 2014, Wiley. 

The binders with different physicochemical properties and bonding methods are intricately associated with the 
service performance of the castables [5,6]. Calcium aluminate cement (CAC) is presently the most prevalent for 
alumina-magnesia refractory castables, which exhibited high strength, outstanding workability, chemical erosion and 
corrosion resistance. However, low melting point phases such as anorthite (CaAl2Si2O8) and gehlenite (Ca2Al2SiO7) can 
be easily generated due to the reaction between CaO contained in CAC, and SiO2 and Al2O3 in the castables, and the 
high-temperature properties of the refractory castables are reduced, which limits the application of the CAC bonded 
castables under the harsh environmental conditions of modern extra-furnace refining [7,8]. In addition, a large amount 
of crystalline water is contained in hydration products like CAH10 and C2AH8, and during heat treatment, the 
dehydration of these hydration products will lead to a decrease in the mechanical strength of the castables and an 
increase in the risk of explosive spalling of the castables. 

The improvement of the high-temperature service performance and explosive spalling resistance of CAC-bonded 
castables can be achieved by reducing the cement content and modulating the hydration process and the hydration 
product composition. Traditional CAC-bonded castables (CaO > 2.5 wt.%) were developed into low cement castables 
[9] (LCCs, 1.0 wt.% < CaO < 2.5 wt.%) and ultra-low cement castables [5,10] (ULCCs, 0.2 wt.% < CaO < 1.0 wt.%), 
and certain amounts of micro and ultra-micro powders such as micro SiO2 and activated Al2O3, need to be added to 
enhance the mechanical strength of the castables [11]. Therefore, the development of cement-free binder systems and 
the transformation of the bonding mode of the castables from hydrated to cohesive bonding are effective means by 
which the high-temperature performance of alumina-magnesia castables can be enhanced and the risk of explosive 
spalling can be reduced [12,13]. 

2. Traditional Hydraulic Binding Cement-Free Binders 

2.1. ρ-Al2O3 

2.1.1. Hydration Behavior and the Problems 

ρ-Al2O3 (HA) is the product of alumina trihydrate after rapid calcination at 600–900 °C. There are no impurity 
components in HA, and the generation of low melting point phases in the castables can be avoided, so that good slag 
corrosion resistance and creep resistance can be possessed by the castables [14]. The castables bonded by HA binders 
are similar with respect to the hardening mechanism to LCCs and ULCCs. HA binder is of high activity, a lamellar 
structure, and a high specific surface area (100–200 m2/g) [15,16]. In the hydration process of HA, HA particles are 
dissolved in water and Al(OH)4

− ions are released (reaction Equation (1)) [17]. After reaching the saturated 
concentration, an amorphous layer of pseudo-bomite gel is precipitated (reaction Equation (2)), and a small portion of 
them is converted into boehmite gel (Al2O3(1–2)H2O), and a majority of them are converted into bayerite crystals 
(Al2O3·3H2O) (reaction Equation (3)) [6,18].  

AlଶOଷ ⋅ 𝑛HଶO(0 ≤ 𝑛 ≤ 2)+HଶO → Al(OH)ସ
ି+HଶO (1)

Al(OH)ସ
ି+HଶO → β-AlOOH (2)

ρ-AlଶOଷ + 𝑛HଶO → 2Al(OH）ଷ+AlଶOଷ ⋅ (𝑛-2)HଶO (3)

However, some drawbacks of HA binders exist: (1) A higher demand of water and a longer mixing time is required 
of the castables due to the large specific surface area of HA [19]; (2) The air pores are blocked by the proposed boehmite 
gel, resulting in the poor gas permeability of the hydration product, and the decomposition temperatures of the HA 
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hydration products in a narrow temperature range of 100–500 °C as shown in Table 1 investigated by Fábio et al., which 
led to a large risk of explosive spalling of the castables [20]. (3) The mechanical properties of the castables in the range 
of 300–1000 °C heat treatment are poor [21–23]. 

Table 1. Decomposition temperatures of the HA hydration products [20]. Reprinted with permission from Ref. [20]. Copyright 
2004, Elsevier. 

2.1.2. Modification 

Thereby, the workability, mechanical properties and explosive spalling resistance of the castables are improved by 
regulating their hydration behavior and hydration products of the HA binder. Those are close to the factors including 
the HA particle size, pore surface properties, and additives [24,25]. Compared to large-sized particles (with a D50 of 
20–50 μm), a continuous layer of thin sheet boehmite is more likely to be formed by small-sized HA particles (D50 of 
10 μm). The green mechanical strength of the castables benefited from this, yet the water demand of the castables is 
caused to rise and the setting time is made to shorten [23]. Li et al. [16] found that the flow value increased from 173 
mm to 206 mm and the hardening time is prolonged for the HA bonded castables by the HA binder particles being ball 
milled for 6 h, reducing the specific surface area of pores from 306.64 m2/g to 284.49 m2/g. And the specific surface 
area of pores of the HA particles can be further reduced to 177.53 m2/g through adding the magnesite powder 
(Mg5(CO3)4(OH)2·5H2O) during the ball milling process [26]. This is because the magnesite powder, which has a similar 
lamellar structure, is inserted into lamellar ρ-Al2O3 particles and fills in the pores and cracks. However, the mechanical 
strength of the castables after drying is reduced by the above methods. The formation of the hydrate phases can be 
delayed by the additives. The dispersion of the particles in water can be improved by additives such as citric acid, and 
citrate by adsorbing on the surface of HA particles [27]. The addition of SiO2 micropowder also can be distributed on 
the surface of the HA particles by the formation of SiO2-AlOOH gel [28]. The hydration process of HA is effectively 
prevented from proceeding by all of these measures, resulting in extending the working time and affecting the density 
and strength of the castables. However, the high-temperature service performance of the castables can be reduced by 
SiO2 micropowder. 

The gas permeability of the bonded castables is improved by the increase in pore volume and large-size pores of 
the hydration products, but their mechanical strength and high-temperature properties are worse. The method for 
enhancing the gas permeability of HA-bonded castables is analogous to that of CAC-bonded castables. Organic fibers 
with a melting point HA of 150–200 °C can be effectively added so that the dehydration of Al (OH)3 can be enabled to 
be quickly discharged, and the explosive spalling of the castables is likely to occur at 400 °C can be reduced and its 
resistance to thermal shock cannot be diminished [29]. Additionally, the explosive spalling resistance of the castables 
is effectively improved by the addition of H2O2 resulting in the increased average pore size of the pores in the castables. 
However, it has led to a reduction in bulk density and mechanical strength, and its content should be controlled at around 
0.075 wt.% [30]. The gas permeability properties of CAC and HA bonded castables after the addition of different drying 
agents and SiO2 sols are summarized in Figure 2: The gas permeability of the castables can be enhanced by the active 
compounds within the range of 80–150 °C, while the different fibers need to be within the range of 150–450 °C to be 
effective [31–36]. The gas permeability of CAC bonded castables can be most prominently enhanced by the fibers, 
whereas the gas permeability of HA castables is more beneficially improved by the active compounds. The gas 
permeability coefficients k1 of CAC, HA and SiO2 sol-bonded castables are shown in Figure 3 [31–37]. Among them, 
the best gas permeability is possessed by SiO2 sol bonded castables with the coefficients in the range of 6–10 × 10−12 
m2, nearly two or four orders of magnitude more than those of the CAC bonded castables after drying at 110 °C. The 
gas permeability of CAC bonded castables ranked second, with the coefficients in the range of 2–200 × 10−16 m2 after 
drying at 110 °C. The worst one is of HA-bonded castables with a coefficient of 9 × 10−19 m2, nearly three orders of 
magnitude lower than that of the CAC bonded castables after drying at 110 °C. 

ρ-Al2O3 Decomposition Temperature (°C) 
Free-water release From room temperature to 100 °C 

Alumina gel and the boehmite decomposition 100–300 
Bayerite decomposition 300–500 
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Figure 2. Starting temperature for enhancing the gas permeability for CAC and HA bonded castables by different drying agents 
[31−36]. Reprinted with permission from Ref. [31,32] Copyright 2004, Elsevier; [33,34] Copyright 2003, American Ceramic 
Society; [35] Copyright 2016, ECREF; [36] Copyright 2010, MRS. 

 

Figure 3. Effects of different drying agents and CS on the gas permeability coefficient k1 of CAC and HA bonded castables [31−37]. 
Reprinted with permission from Ref. [31,32] Copyright 2004, Elsevier; [33,34] Copyright 2003, American Ceramic Society; [35] 
Copyright 2016, ECREF; [36] Copyright 2010, MRS; [37] Copyright 2018, ResearchGate. 

2.2. Activated MgO  

2.2.1. Hydration Behavior and the Problems 

Similar to the HA binder, the activated MgO binder generated the bonding strength via hydration [38–40]. 
Moreover, it is introduced as a premium raw material into the high alumina-magnesia refractory castables. Additionally, 
Mn2+, Fe2+, and Fe3+ ions within the slag are liable to be captured by in-situ magnesia-alumina spinel for the formation 
of a solid solution, which effectively improved the slag corrosion resistance of the castables [41,42].  

It is suggested by the current results that two hydration mechanisms of the activated MgO exist. One is the 
shrinkage nucleus mechanism proposed by Kitamura et al. [43], which is applicable to 135–200 °C. The other is the 
dissolution precipitation mechanism [44] researched by Rocha et al., which is applicable to 35–90 °C. The MgO 
particles are dissolved in water and the hydration reaction occurs on the surface of the particles to generate MgOH+ 
ions. After reaching a saturated concentration with the OH− ions in water, Mg(OH)2 is made to begin to nucleate and 
grow up, and ultimately precipitate and deposit on the surface of the MgO particles.  

The activated MgO binder reacts with water to form Mg(OH)2, which has an expansion of 2.5 times its volume 
and leads to cracking of the castables during the curing process [45]. In addition, the dehydration of Mg(OH)2 is 
concentrated in the range of 380–450 °C [46,47], and even reaches 500 °C under increased pressure, which is easy to 
cause the explosive spalling of the castables in the drying process, and a strict drying system is necessary to be developed. 
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2.2.2. Modification 

The hydration process of activated MgO is affected by the type, size, and purity of MgO particles [48,49], the pH 
value, temperature, and admixtures. Based on the hydration kinetics of MgO, the cracking of the castables can be 
reduced by the control of the hydration process of MgO, and the commonly used measures are as follows: 

Cracking is controlled by adding surfactants to accelerate the production of Mg(OH)2 [50,51]. Commonly used 
surfactants [52,53] are mainly salts (ammonium chloride, magnesium acetate, magnesium nitrate and sodium acetate) 
and weak acids (nitric acid, acetic acid). When dissolved in water, anions are released by these additives and can be 
respectively adsorbed on O2− or Mg2+. The nucleation site barriers of Mg(OH)2 are lowered and the nucleation rate is 
increased. The crystal morphology of Mg(OH)2 is also changed by formic, acetic and propionic acids [47,48], with the 
particles being made pliable and the compatibility with the pores of the castables being enhanced resulting in the 
reduction of the cracks [54]. 

The control of cracking was also achieved by delaying the generation of Mg(OH)2 through the addition of additives 
such as inorganic salts [55,56] and citric acid [57]. Citric acid is currently a more effective retarder. The generation of 
Mg(OH)2 is inhibited by the formation of a complex chelate on the surface of MgO particles resulting from the reaction 
between citrate ions and Mg2+. Chen et al. [58]. investigated the functional mechanism of citric acid on MgO hydration 
based on molecular dynamics. The adsorption energy of citric acid (−2.89 eV) adsorbed on the defective MgO (001) 
surface is more negative than that of H2O (−2.49 eV), indicating that citric acid instead of the H2O would easily bond 
with unsaturated Mg2+ at defects and defective MgO surfaces from hydration.  

The SiO2 micropowders are most commonly used in combination with activated MgO binders. As shown in Figure 
4 [59], in alkaline aqueous solutions, HSiO3

− ions can be ionized by SiO2 and then adsorbed on the surface of MgO. 
Volume-stable hydrated magnesium silicate (M-S-H) can be generated [60–62], which can be produced in alkaline 
environments. M-S-H can be rapidly generated with the M/S of 0.9–1.1 and at temperatures of 50–70 °C [59,63]. 
Cracking in the casting can be controlled by directly adding pre-synthesized M-S-H. In the research [64,65], the 
formation of Mg(OH)2 is effectively reduced by partial or total substitution of the reactived MgO binder. The 
dehydration products of M-S-H are divided into three stages: free water evaporation at 100–200 °C; Mg(OH)2 
decomposition at 400–600 °C; and M-S-H decomposition and formation of magnesium olivine at 600–800 °C. 
Compared with Mg(OH)2, the range of dehydration temperature is wider and water vapour is lower than the dehydration 
products of M-S-H, by which the explosive spalling resistance of the castables is improved. However, when the 
specimen size is large, the addition of SiO2 greater than 6.0 wt.% [66,67] is required to ensure that the specimen does 
not crack. It has also been noted that the decomposition temperature of the hydration products is increased and the 
flowability and gas permeability of the castables deteriorated with SiO2 addition greater than 1.0 wt.%. While, the high-
temperature mechanical strength and slag corrosion resistance of the castables will be reduced by excessive SiO2 
micropowder. The synthesis of M-S-H requires strict control of the MgO/SiO2 molar ratio and pH, and the synthesis of 
hydrotalcite takes months to complete, causing the difficulty of large-scale production. 

 

Figure 4. Schematic of the mechanism of the inhibiting activated magnesia hydration by micro silica [59]. Reprinted with 
permission from Ref. [59] Copyright 2014, Wiley. 

The SioxX-Mag as an additive was developed by Santos Jr. et al. [68] and was applied to alumina-magnesia 
refractory castables, and superior explosive spalling resistance of the castables was shown compared to that with the 
addition of 1.0 wt.% SiO2 micropowder. However, the permeable path formation and the mechanism of microstructure 



High-Temperature Materials 2025, 2, 10002 6 of 19 

 

improvement remain unclear. The SiO2 micropowder with a content of 3.0–8.0 wt.% and an appropriate amount of 
SioxX-Mag were added to the activated MgO bonded castables reported by Hong [69] et al., and large test pieces 
without cracks were produced. If industrial scale application is to be achieved, a larger proportion of SiO2 micropowder 
needs to be added. However, it is easy for SiO2 to react with the oxides and impurities (CaO, FeO, and Al2O3, etc.) in 
the castables system, resulting in the formation of low melting point phases resulting in the deterioration of the high-
temperature performance of the castables. The slurry made of MgO and SiO2 micropowders, which were added to the 
castables by the wet milling process [70], can accelerate the formation of M-S-H and reduce the addition of SiO2 
micropowders. Consequently, the explosive spalling resistance of the castables can be significantly improved. 
Especially when 2.0–4.0 wt.% of SiO2 micropowders are added, the cold modulus of rupture and the hot modulus of 
rupture of the castables are increased, respectively by 136.0% and 36.0%, and the thermal shock resistance is also 
significantly enhanced. M-S-H binder was prepared by the hydrothermal synthesis method using Na2SiO3·9H2O and 
MgCl2·6H2O as raw materials by Zhang Yu et al. [62]. It was added to magnesium refractory castables for tundish 
lining, while the 3.0–6.0 wt.% SiO2 micropowder needed to be added so that good mechanical strength and explosive 
spalling resistance at medium temperature could be achieved for the castables. The pre-synthesized M-S-H after firing 
at 200–400 °C was used as a binder for the castables by Li et al. [64], and the addition of SiO2 micropowder was reduced 
to 1.0 wt.%. However, the synthesis process of M-S-H was cumbersome and the price was high. 

The chelating agents are also used to improve the gas permeability of reactive MgO-bonded castables. Aluminum 
lactate (aluminum salt of 2-hydroxypropionic acid) [71] is used as a chelating agent for Mg2+ so that the generation of 
hydrotalcite-like (MgxAly(OH)2x+2y·y/2nH2O) can be induced. The cracking of the castables is reduced and the explosive 
spalling resistance of the castables is enhanced [72], yet the green mechanical strength is decreased. Among the 
commonly used MgO raw materials (dead-burned magnesia sand, caustic magnesia sand, and light MgO micropowder), 
better gas permeability is exhibited by light MgO micropowder-bonded castables [73]. After heat treatment at 110–
450 °C, the permeability coefficients k1 and k2 of the castables containing 1.0 wt.% aluminum lactate salt are 2 × 10−13 
m2 and 2 × 10−9 m respectively, which is two orders of magnitude better than that of magnesia sand-bonded castables. 
These k1 and k2 are four orders of magnitude higher than those of the CAC- and HA-bonded castables. The effects of 
four types of drying agents, polymerfiberss (PF), organic aluminum salts (OAS-aluminium lactate), SiO2-based 
additives (SM) and reactive compounds (MP), on the gas permeability and explosive spalling resistance of MgO-bonded 
castables are compared [65]. Although the polymer fibers are melted at −104 °C, they need to be fully decomposed 
(>300 °C) to act as a gas permeability enhancer. The incorporation of 1.0 wt.% SM does not inhibit the explosive 
spalling of the castables, and the pores in the castables are filled with the amorphous hydration products generated by 
the reaction between SM and Mg(OH)2, which leads to a decrease in gas permeability. 

The flowability of the refractory castables was significantly improved with no cracks during drying by using a 
slurry of MgO and silane coupling agent-modified silica sol made as a binder [74]. A negatively charged protective 
layer was formed on the MgO particles by the modified SiO2, and the agglomeration of MgO particles was prevented. 
In addition, as the hydration reaction of MgO proceeded, the dissolution of SiO2 was accelerated by the increase in pH 
value in the solution, and finally, a protective layer of Mg5Si8O20 (OH)28H2O was generated on MgO particles. This 
protective layer was transformed into a dense magnesium olivine (Mg2SiO4) layer by sintering. The mechanical strength 
of the matrix was significantly enhanced, but this method has not yet been popularized for application. The ultrafine 
MgO powder was used as a binder for refractory castables by Luz et al. [48], and its hydration rate was adjusted by 
formic acid resulting in no cracks in the castables during drying. The cold modulus of rupture of MgO-bonded refractory 
castables was similar to that of CAC bonded castables curing at 50 °C for 24 h, but the strength decreased rapidly after 
drying, and the gas permeability of the castables was poor.  

The formation of Mg-Al hydrotalcite (Mg6Al2CO3(OH) 16∙4H2O) is induced under certain curing conditions in the 
MgO-bonded castable system by the addition of alumina sol, nano-Al2O3 micropowder or ρ-Al2O3. The reduction of 
the mechanical strength at mid-temperature is effectively slowed down as a result [75,76]. In addition, the wide 
temperature range of its decomposition is described as follows [77]: (1) <100 °C: free or adsorbed water is removed; 
(2) 100–200 °C: interlayer structural water is eliminated; (3) 300–400 °C: crystal dehydroxylation and decarbonization 
are carried out. A porous structure is formed inside the castables, and the burst resistance is enhanced. 

The effects of the above methods on the decomposition temperature of the hydration products of the active MgO 
binder are shown in Figure 5 [71,72,78], and the effects on the mid-temperature mechanical strength of the castables 
are shown in Figure 6 [74,75]. It can be seen that the explosive spalling resistance and mid-temperature strength of the 
castables are enhanced by the addition of SiO2 micropowder/sol, nano-Al2O3 micropowder/sol, etc. The gas 
permeability of the castables is enhanced by chelate additives, while there is a decrease in the mechanical strength. 
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Therefore, a significant challenge remains to be confronted despite the outstanding potential for the development of 
MgO-bonded alumina-magnesia refractory castables. Although certain research results have been obtained regarding 
the inhibition of hydration cracking of MgO-bonded castables under laboratory conditions, the issue of hydration 
cracking in large-scale industrial applications is still severely prevalent. 

 

Figure 5. Decomposition temperatures of hydration products of activated MgO binder affected by the different additives and drying 
agents [71,72,78]. Reprinted with permission from Ref. [71] Copyright 2004, Elsevier; Ref. [72] Copyright 2015, ECREF, [78] 
Copyright 2010, Ceramic Society of Japan. 

 

Figure 6. Cold modulus of rupture of activated MgO bonded refractory castables affected by the different additives and drying 
agents [74,75]. Reprinted with permission from Ref. [74,75] Copyright 2023, Elsevier. 

3. Sol-Gel Binders  

3.1. Silica Sol 

3.1.1. Curing Mechanism and the Problems 

Compared with traditional hydraulic binders, the sol-gel binders used for castables are suspensions of nanoparticles, 
and generated bonding strength by “gelling” or “flocculation” with no hydration products generated. The sol bonded 
castables have excellent explosive expelling resistance due to the permeable pore structure obtained after heat treatment 
[79]. As a type of sol-gel binder, silica sol (CS) was first utilized in practical production applications, good stability 
suspension, a solid content of 20–60 wt.%, a particle size of 8–80 nm, and high activity. The silanol groups (SiOH) and 
hydroxyl groups (-OH) are connected by collision reactions to create new bonds under different curing regimes [37], 
and “gelling” is achieved (Figure 7). 
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Figure 7. Colloidal silica gelling mechanism [51]: (a) silicon hydroxyl groups (Si-OH) covered on the surface of particles; (b) 
Dehydration between silicon hydroxyl groups; (c) Siloxane bonds (-Si-O-Si-) formation; (d) three-dimensional network of SiO2 
particles [37] Reprinted with permission from Ref. [51] Copyright 1999, Wiley; Ref. [37] Copyright 2018, ResearchGate. 

A kinetic model of the SiO2 sol gelation process was established by Wen et al. [80] for the verification of the 
gelling mechanism (Figure 8). Within the SiO2 sol, a silica-oxygen network is formed. The polysilicon acid is created 
as a result of SiO2 being dissolved in water. Si-O branched chains are produced through the polymerization of the 
ionized Si(OH)3O− with silanol present on the particle surface. The speed of gelling is determined by the growth rate of 
the Si-O branched chains. The acceleration of gelation can be attained by enhancing the ionization of silanol or 
decreasing the ionization rate of silicic acid. 

 

Figure 8. Molecular dynamics model of the gelation process of silica sol [80], the “#” in the figure represents the alcohol hydroxyl 
network “OH-Si-OH”. Reprinted with permission from Ref. [80] Copyright 2023, Elsevier. 

However, CS utilized as a binder has the following drawbacks. Firstly, it is hard for the storage and transportation 
of the suspended liquid state of CS, and it is liable to solidify at low temperatures. Secondly, the generation of a liquid 
phase within the castables is contributed to by an excessive quantity of SiO2, which leads to a reduction in the 
refractoriness of the refractory castables. As a result, its employment as a binder for ladle lining castables is limited, 
with the maximum operational temperature being restricted to 1600 °C [81,82]. 

3.1.2. Modification  

The solidification of CS can be modulated through the alteration of pH, electrolyte concentration, temperature, as 
well as the particle size and concentration of SiO2. It was discovered by Nouri-Khezrabad et al. [83,84] that the 
modulation of the pH value of CS from 3 to 5 leads to a more rapid solidification of CS. When the pH value is greater 
than 3.5, the addition of salts (e.g., NaCl) and organic liquids can be employed to induce the promotion of colloidal 
coagulation [83]. Additionally, the flocculation of gel particles can be actuated by the addition of curing agents like 
Al2O3, MgO, SiO2, CaO, Mg(OH)2, MgCl2, and CaCl2 [84]. Simultaneously, excellent operational characteristics can 
be bestowed upon the castables. Taking MgO as an example, when it is incorporated into CS, Mg(OH)2 is generated. 
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This substance is capable of seizing H+ from the Si-OH group, thereby expediting the formation of siloxane bonds 
(Figure 9). The gelation of CS can be instigated by both heat treatment [85] and freeze-drying [86]. A microporous 
structure (with gel pores < 0.03 μm) is acquired by the cured CS gel, which endows the castables with favorable gas 
permeability and facilitates the prompt repair of the castable lining under high-temperature circumstances.  

 

Figure 9. Schematic representation of colloidal silica consolidation promoted by MgO: (a) colloidal silica particle surface; (b) MgO 
addition; (c) siloxane bonds formation; (d) siloxane bonding (-Si-O-Si-) [15]. Reprinted with permission from Ref. [15] Copyright 
2020, Springer. 

In alumina-magnesia castable systems, the formation of mullite (Al6Si2O13) is enabled by the reaction of nano-SiO2 
and Al2O3 at 1200 °C [87]. Thereby, the high-temperature mechanical properties of the castables are enhanced. 
Simultaneously, the surfaces of activated Al2O3 particles are adsorbed upon by the CS, the pores in the matrix are filled 
up, and sintering and matrix densification are spurred.  

3.2. Alumina Sol 

3.2.1. Alumina Sol Structure and Curing Mechanism 

Consequently, to solve the drawback of silica sol, alumina sols (CA) were developed. Comparatively, the melting 
point of the alumina is much greater than that of silica. Also, the bulk density, strength, and other refractory/physical 
properties are quite superior to that of silica. There are mainly two methods used to synthesize alumina sols, including 
organic (alkoxides) and inorganic (salts) feedstock methods. Sarathchandran et al. reported an organic method to 
synthetize CA using nano boehmite (γ-AlOOH) with aluminum opropoxide serving as a precursor and a strong acid 
was added as a stabilizer [88]. On the other hand, the inorganic raw material method [89,90] was implemented by using 
HCl, nitric acid, or citric acid added to aluminum metal, aluminum salts, or Al2O3 powder. This CA was characterized 
by a low production cost yet a high impurity content and harmful gases emitted at elevated temperatures. A structural 
model [88] of the CA, as illustrated in Figure 10, was centered around a positively charged gel nucleus, with a bilayer 
structure consisting of adsorption and diffusion layers being formed. 

 

Figure 10. Aluminum sol structural model [88]. Reprinted with permission from Ref. [88] Copyright 2023, SZTE. 

A molecular structure of the pseudo-boehmite (Figure 11) is configured with a coplanar-connected double-layered 
octahedral crystal structure [91]. Highly polarized and stable groups of aluminum hydroxyl (Al-OH) are situated on its 
surface. A larger quantity of oxygen vacancies gives rise to abundant positively charged active sites. The interlayer 
water is adsorbed onto the groups of Al-OH via hydrogen bonding, a process that expands the space between the double-
layered octahedra, thereby elongating the Al-O bonds and shortening the Al-OH bonds. Milani et al. reported that the 
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greater the amount of interlayer water, the more H+ is absorbed by groups of the hydroxyl of pseudo-boehmite, and the 
more pronounced the gelling ability becomes [91]. The curing of CA bonded castables will occur by the physical and 
chemical mechanisms: the dehydration of the hydroxyl groups on the surface of the γ-AlOOH particles leads to the 
formation of Al-O-Al bonds and the gel formed by heat treatment [92]. 

 

Figure 11. Crystal structure of one-dimensional nanowires of pseudo-boehmite: (a) absence of intercalated water; some terminated 
O atoms are bound (b) and not bound with H atoms (c) [90]. Reprinted with permission from Ref. [90] Copyright 2016, PNAS. 

3.2.2. Problems and Modification 

The application of pseudo-boehmite gel as a refractory binder has received relatively few reports. It is typically 
utilized in the production of functional ceramics as a binder, as an adsorbent for heavy metal ions, and in other research 
domains [93,94]. In comparison to that of CS, any low melting phase formation in the CA bonded castables, increases 
the high- temperature properties and corrosion resistance of the refractory. However, the green mechanical strength of 
castables cured at low temperatures is even lower than that of CS on account of the low solid content and weak bonding 
ability of CA. The industrial applications of the CA are limited due to low flowability, poor stability of sol, poor 
workability, and uncontrollable curing conditions, although it is a certain degree effective of induction of CA curing by 
the utilization of curing agents and additives [95]. 

The flowability of CA-bonded castables is suitable when the additions (in terms of solids) of CA are customarily 
regulated within the range of 1.0 to 4.0 wt.% [96]. The mechanical properties and slag corrosion resistance of the 
castables will be deteriorated with the addition exceeding 4% causing the water demand augmented. The curing of sols 
can also be affected either by pH alterations (∆pH mechanism), by an increase in the strength of ionic solution (∆I 
mechanism) [97,98], or by the additives of urea, formamide, and ammonium carbamate through transforming the ionic 
strength of the solution, thereby expediting the curing of CA. The gelation process was studied about the ionic 
concentration by the phase diagrams of the pseudo-boehmite gel suspensions. It was deduced that a higher ionic strength 
renders gelation more facile at low ionic concentrations, whereas a lower ionic strength facilitates gelation more readily 
at high ionic concentrations, by the variation in dynamic shear viscosity [99]. A method integrating both physical and 
chemical curing mechanisms was propounded by Grządka et al. [100], where alginate was employed as the gel precursor 
and hydroxy aluminum diacetate (HADA) as a retarder/accelerator. Alterations in the ionic concentration and pH within 
the sol were instigated by dissolution, giving rise to physical flocculation, and chemical gelling was actuated by the 
cross-linking ofhydroxy-aluminumm glycolic acid and aluminum ions with one another. Conversely, ammonium 
polyacrylate was utilized as a dispersing agent by Prabhakaran et al. [101] along with the addition of MgO. The 
flocculation of CA was precipitated by the Mg, because the Mg2+ ions were generated and adsorbed onto the nano-
Al2O3 particles after MgO dissolved in water. Furthermore, the Mg2+ interacted with the dispersed polyacrylate ions in 
the solution to engender Mg-polyacrylic acid. However, the aforementioned curing agents are capable of promoting CA 
curing, further substantiation is requisite for industrial application. 

The sol bonded castables can be subjected to high-temperature heat treatment without the prerequisite of initial 
drying at 100 °C resulting form no hydrated phase generation during the curing process and the formation of a porous 
structure during the gelation process of the castables. It was ascertained by Braulio et al. [83] that when refractory 
castables bonded with CS and CA were heated to 800 °C at a heating rate of 20 K/min, the weight loss of the castables 
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was merely approximately 0.25 wt.%, which is substantially lower than that of CAC-bonded castables (around 1.9 wt.%) 
and HA-bonded castables (around 0.6 wt.%). This concurs with the research of Ismael et al. [102], and it is inferred that 
CS and CA-bonded castables are endowed with a high level of gas permeability, even exceeding that of LCCs and 
ULCCs after the addition of polypropylene fibers, which markedly curtails the installation and maintenance times of 
the ladle liners. Nevertheless, the occurrence of drying cracks within the castables is prone to be induced with CS of 
high solid content and a particle size less than 14 nm. 

Compared with hydraulic binders, within the temperature range from room temperature to 600 °C, a relatively 
lower mechanical strength is manifested by CS and CA bonded castables, which is enhanced by improving the curing 
temperature. It was investigated by Braulio et al. [96] that the mechanical strength of CA-bonded refractory castables 
with the CA addition of 4.0 wt.% cured at 50 °C is comparable to that of CAC-bonded castables. It’s worth noting that 
there is a significant increase in mechanical strength of CS and CA bonded castables [103–105], attaining 5 MPa at 
800 °C, and even reaching 8 MPa at 1000 °C of CS-bonded castables, which is twice the magnitude of that of CAC-
bonded refractory castables, while a sharp decrease in mechanical strength of the CAC and HA bonded castables is 
exhibited after heat treatment of 600–1000 °C (Figure 12). It is shown that sintering was promoted by CS, and the high-
temperature performance of the castables is further improved due to the formation of mullite. Thus, CS is more suitable 
as a refractory castable binder for aluminum smelting or for the kiln of the chemical industry with a service environment 
of low temperature. To induce the drawbacks of SiO2 at low temperatures, a composite utilization of CS and CAC is 
used. The mechanical strength of the castables after drying is up to 4.29 MPa, 62–81% of the strength of CAC-bonded 
castables can be achieved even after heat treatment at 110–800 °C and 115–148% can be reached after heat treatment 
at 1100–1400 °C. Meanwhile, the target of fast drying at high temperature is also achieved [106]. Similarly, other novel 
sols such as mullite sols [107] and magnesia-alumina spinel sols [108,109] have been developed. Nevertheless, the sol 
binders remain in the laboratory research stage due to the challenges associated with the high cost during the process of 
production and preparation, and the low green mechanical strength of the castables. 

 

Figure 12. Splitting tensile strength as a function of heat treatment temperatures for CAC, HA, CS, and CA bonded castables 
[96,103]. Reprinted with permission from Ref. [96] Copyright 2011, ECREF; Ref. [103] Copyright 2006, Secar. 

4. Organic Hydratable Magnesium Citrate Binder 

4.1. Hydration Behavior and Problems 

Based on the study of active MgO binder, hydratable magnesium citrate (HMC) was prepared by Chen et al. [110] 
by removing the water of crystallization from magnesium citrate hydrate. The HMC can be quickly dissolved and 
hydrated, highly crystalline magnesium citrate hydration products are generated, and a three-dimensional network 
structure is formed, so that a high green mechanical strength is presented by the castables. In the alumina-magnesia 
castable system, the additional amount of HMC binder is 3–5 wt.%. Excellent volume stability is exhibited of the 
castables in the curing and drying process, and the mechanical strength similar to that of the CAC bonded castables is 
obtained after heat treatment at 110 °C. The cold modulus of rupture after drying is 8–13 MPa, and it is 17–21 MPa 
after heat treatment at 1500 °C. The hydration product of magnesium citrate is an organic material, and nano-MgO 
(about 100 nm) was obtained after its decomposition during heat treatment, and micron magnesia-alumina spinel can 
be generated in situ by reacting with Al2O3 at 1100 °C. The thermal shock resistance and slag corrosion resistance of 
the castables are significantly improved [111]. The cold modulus of rupture of the castables after thermal shock after 
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three water-cooling cycles can be up to 5–6 MPa, which is 23–30% higher than that of CAC-bonded castables, and the 
slag corrosion resistance is better. Therefore, HMC is a very promising magnesia binder. 

However, the mid-temperature mechanical strength of the castables was significantly decreased due to the 
decomposition of the hydration products of HMC. Especially, the mid-temperature mechanical strength at 500 °C was 
only 0.4–0.5 MPa.  

4.2. Modification 

Magnesium carboxylate borate ester as a new hydration product was formed by the reaction between boric acid 
and HMC with 1.0–1.5 wt.% boric acid added in the HMC bonded castables. The decomposition temperature of 
magnesium citrate-borate was increased by about 80 °C compared with that of the hydration products of HMC, by 
which the mid-temperature mechanical strength of the castables after 400 °C heat treatment was 12 times improved. 
However, the slag corrosion resistance was reduced [112]. In addition, the organization and properties of steel could be 
improved by a moderate amount of boron in the steel billet, but if the content was too large, the hardenability, strength 
and hardness of steel would be decreased [113]. Therefore, the use of boric acid needs to be coordinated with the 
steelmaking process and strictly controlled. 

The activated nano-MgO was obtained by HMC after heat treatment at 1100 °C, which was added to the HMC-
bound alumina-magnesia castable system containing a small amount of SiO2 micropowder and the M-S-H generated. 
As a result, the mid-temperature mechanical strength of the castables after heat treatment at 800 °C was enhanced. 
However, the mid-temperature mechanical strength of the castables after heat treatment at 500–600 °C has not been 
investigated [114]. The thermal shock and slag corrosion resistance of the castables was significantly improved, 
attributed to the in-situ formation of magnesia-alumina spinel by the reaction of 1.5–2.0 wt.% of submicron Al2O3 with 
nano-MgO, but the mid-temperature mechanical strength of the castables heat treated at 500–800 °C was not improved. 

In addition, the setting time is short and the flowability is poor of HMC bonded castables, resulting from the rapid 
hydration reaction of HMC, which failed to meet the construction requirements of the castables. The above performance 
of the castables could be improved by adding 0.01–0.02 wt.% of MgCl2, but the mechanical strength of the castables 
was reduced. New hydration products could be generated by using SiO2 gel to modify the HMC binder (HMC/silica sol 
binder), and the thermal stability of the hydration product was improved. The cold modulus of rupture of the castables 
after heat treatment at 500 °C was 267% improved compared with the HMC-bonded castables [115]. Moreover, the gas 
permeability of the castables could be enhanced by the microporous structure of the silica gel. The SiO2 content should 
be controlled at 1.0–1.5 wt.%. However, due to the decomposition of organic hydration products, the mechanical 
strength of the castables at medium temperature was still lower than that of CAC and reactive MgO-bonded castables. 
Therefore, the regulation of the hydration behavior of the HMC bond and its effect on the performance of alumina and 
magnesium castables need to be further investigated. 

Above all, the advantages and disadvantages of the properties of the alumina-magnesia castables bonded by 
cement-free binders are shown in Table 2. It is shown that, in the case of ρ-Al2O3 and activated MgO bonded castables, 
the slag corrosion resistance and high-temperature performance are outstanding but the explosive spalling resistance is 
poor. In the case of silica sol and alumina sol bonded castables, the risk of explosive spalling of the castables is low, 
while the green mechanical strength at room temperature is weak. As to HMC/sol bonded castables, the properties of 
the green mechanical strength, the high-temperature performance, and the explosive spalling resistance are good, which 
skillfully integrate the inherent advantages of castables bonded by traditional hydraulic cement-free binders and sol 
binders, while the mid-temperature mechanical strength needs to be improved. It can be reasonably inferred that the 
properties of castables bonded by organic composite inorganic cement-free binders are likely to be superior to those of 
castables bonded by single-type cement-free binders. 
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Table 2. Advantages and disadvantages of the castables bonded by alumina-magnesia cement-free bonders. 

Binders Advantages Disadvantages 

ρ-Al2O3 

[14,19–22] 

 Good slag corrosion resistance 
 Outstanding high-temperature performance due to no impurity 

components of the binder. 

 The castables ρ-Al2O3 are required a high water demanded and a longer mixing 
time. 

 The air pores are blocked by the proposed boehmite gel, resulting in the poor gas 
permeability of the hydration product, and high risk of explosive spalling of the 
castables.  

 Poor mechanical properties of the castables after heat treated at 300–1000 °C.  

Activated MgO 
[39–47] 

 Outstanding high-temperature performance  
 Outstanding slag corrosion resistance due to the in-suit generation of the 

MgAl2O4 spinel.  

 Cracking of the castables during the curing process due to the expansion of 
volume during the hydration of MgO and micro powders addtives such as SiO2 
and Al2O3 are needed. 

 Low flowability of the castables. 
 A risk explosive spalling at a certain degree and drying agents are needed. 

Silica sol and alumina sol 
[81–83,87,88,94–96]  

 Outstanding gas permeability of the hydration product, and risk of 
explosive spalling of the castables due to no hydration product 
generation of the sol binder.  

 Optimization the structure of matrix and high-temperature mechanical 
strength of the castables resulting from the generation of nanocrystals.  

 Weak bonding ability of CA curing at room temperature and curing agent and 
heating maintenance and are required.  

 There is still remain in the challenges storage and transportation due to 
temperature sensitivity of the sol and high cost during the process of production 
and preparation.  

 Low mid-temperature mechanical strength especially at 110–800 °C.  

HMC/silica sol binder 
[111–115] 

 Strong binding of the binder and high green mechanical strength of the 
castables. 

 Excellent volume stability of the castables in the curing and drying 
process. 

 Good gas permeability of the hydration product, and low risk of 
explosive spalling of the castables.  

 Outstanding high-temperature performance 

 Poor flowability of the castables. 
 Low mid-temperature mechanical strength of the castables due to the 

decomposition of the hydration products of HMC  
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5. Conclusions 

The application of the CAC bonded magnesia-alumina refractory castables was restricted in the environment of 
the secondary refining because of the low melting point phases formed. Consequently, the reduction of the content 
of CaO and the development of cement-free binders can effectively improve the high-temperature performance of 
the castables. 

1. ρ-Al2O3 and activated MgO as traditional cement-free binders are favored of no impurities formed in the castables, 
so the slag corrosion resistance and thermal shock resistance of these castables are good. However, several issues 
are that: A large amount of water and a long mixing time are needed for the ρ-Al2O3; Cracking takes place of the 
MgO bonded constables in the curing process caused by the volume expansion of the hydration products; and a 
big risk of explosive spalling of these castables due to the dehydration of the hydration products. Thus, suitable 
additives remain to be developed. 

2. The excellent explosive spalling resistance of the sol bonded castables is attributed to the binder generating no 
hydration product. And the high-temperature performance of the castables improved by the generation of nano- or 
sub-micron-sized ceramic phases in the matrix. However, the liquid phase generated by SiO2 with other 
components at high temperature restricts the application. Moreover, a long curing time and low green mechanical 
strength are possessed by sol bonded castables. The development of novel curing agents is required. 

3. The HMC is a type of organic acid magnesium binders and the HMC bonded castables have the greatest research 
value with good volume stability, high green mechanical strength, and excellent high-temperature performance. 
That’s because, in suit submicron magnesia-alumina spiels are formed from the reaction between nano MgO and 
the Al2O3 in the matrix. However, a short setting time of the castables is caused by the fast hydration rate and the 
low mechanical strength at medium temperature caused by the decomposition of the hydration products. The 
hydration mechanism of HMC still needs to be further investigated, and the mechanical strength at medium 
temperature needs to be further enhanced, although the above problems are improved by adding MgCl2, boric acid, 
SiO2 gel. 

6. Outlook 

Although the application of cement-free binders poses various challenges. The development of composite binders 
has become the future research field of the refractories. These types of binders of hydratable magnesium carboxylate 
composited sol-gel, the hydratable magnesium carboxylate composited ρ-Al2O3, and the hydratable magnesium 
carboxylate composited MgO are potential. These binders show promising prospects for significantly improving the 
service performances of castables. 
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