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ABSTRACT: The scarcity of water represents a significant obstacle to the advancement of agriculture in Egypt, requiring the 
implementation of inventive water policies and effective resource management practices. The notion of virtual water, which 
considers the water contained within things, is a possible remedy to mitigate the strain on water resources. This study examines the 
changes over time in the amount of water used internally and the amount of virtual water exported by rice, maize, and wheat crops 
in Egypt between 2000 and 2018. The assessment evaluates the impact of climate variables, crop productivity, and renewable water 
sources on the internal water footprint. The study uses data from several sources and applies a Nonlinear Autoregressive Distributed 
Lag (NARDL) model to analyse how productivity, renewable water supplies, temperature, and precipitation affect the internal water 
footprint. The EVIEWS software is utilised for conducting statistical analysis. The results demonstrate that the internal water 
footprint and productivity of the crops studied vary over time, and climate conditions and the availability of water control this 
variation. The maximum internal water footprint values for rice, maize, and wheat were recorded in 2008, 2011, and 2017, 
respectively, aligning with the highest temperatures and available renewable water resources. The analysis reveals complex 
connections between the independent factors and the internal water footprint of each crop. Precipitation has an inverse correlation 
with the internal water footprint of rice, but renewable water resources have a favourable impact on the internal water footprint of 
wheat. The study emphasizes improving crop choices to minimize water usage and boost water output. Given Egypt’s expected 
water scarcity by 2025 and its reliance on Nile water for irrigation, implementing sustainable solutions for water resource 
management in agriculture is crucial. These findings give useful insights for policymakers and stakeholders in creating efficient 
water management policies and promoting food security in Egypt. 
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1. Introduction 

Water scarcity is a serious issue in Egypt, a country that relies heavily on the Nile River for its water supply [1]. 
Water is regarded as one of the necessary and vital issues to accomplish economic development in general and 
agricultural development in particular, which has become increasingly demanding for Egyptian society due to its 
scarcity on the one hand and the expanding needs demanded of it on the other hand [2,3]. Therefore, it is imperative to 
develop new mechanisms for water policies, in addition to discovering mindful and effective strategies to enhance the 
efficiency of water resources [4]. Given that agriculture is the largest user of water resources in Egypt, absorbing over 
80% of the country’s available water, knowing water use efficiency, particularly in agricultural operations, is vital. 
Additionally, because the desire for food is fundamentally a demand for water in one form or another, this has led to 
the birth of the notion of virtual water, which is defined as the water included in a product, not in a realistic sense, but 
rather in the estimated meaning [5–7]. From this perspective, virtual water can be considered an alternative resource 
that can lower the demand for traditional water sources by reducing the production and exports of crops with high virtual 
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water content while guaranteeing a sufficient degree of food security. Replacing such crops with others that have a 
lower percentage of virtual water and deliver a higher return becomes a strategic priority [8,9]. Relatively speaking, 
another key notion evolved, known as the water footprint, which indicates the total amount of water consumed to 
produce a good or service from the production stage to the ultimate customer [10]. The internal water footprint (IWF) 
refers to the volume of freshwater used within a country to create goods and services consumed by its residents [11]. 

The water footprint is generally divided into three primary components, each represented by a distinct color: the 
blue water footprint, the green water footprint, and the gray water footprint [12]. The blue water footprint represents 
the volume of surface and groundwater consumed during production processes, mainly through irrigation in agriculture 
[13]. The green water footprint accounts for rainwater stored in soil and used by plants, playing a crucial role in rainfed 
agriculture [14]. Lastly, the gray water footprint quantifies the volume of freshwater required to assimilate pollutants to 
meet water quality standards, reflecting the environmental impact of agricultural activities [15]. Together, these 
components provide a comprehensive assessment of water use, enabling policymakers to develop strategies that enhance 
sustainability and efficiency in water resource management [16]. 

In Egypt, this water footprint varies substantially depending on the type of crop, geographical area, and agricultural 
practices practiced [17]. Staple crops like wheat and rice have very significant water footprints due to their extensive 
water requirements during the growing season. Similarly, crops such as maize and sugarcane also contribute 
significantly to the overall IWF due to their cultivation in water-intensive regions. Additionally, various factors 
influence the IWF of crops, including irrigation techniques, soil type, and meteorological circumstances [18]. 
Traditional irrigation technologies, such as flood irrigation, are still widely used in Egypt and are highly inefficient, 
resulting in significant water losses through evaporation and seepage [19]. Furthermore, the change in climatic 
conditions, particularly in Upper Egypt, where temperatures are higher, exacerbates water loss, hence raising the IWF. 
In contrast, current irrigation techniques like drip irrigation have been demonstrated to reduce the IWF by improving 
water use efficiency [20,21]. 

Without a doubt, there has been a significant quantity of scientific research conducted globally, including in Egypt, 
that predicts catastrophic climatic changes in the country. These changes are expected to result in reduced rainfall, 
higher temperatures, and more frequent droughts [22]. These changes pose significant challenges to agricultural 
productivity, particularly rainfed and specific irrigated crops [23,24]. 

In addition, the concept of virtual water exports (VWE) introduces intricacy to the scenario. For Egypt, exporting 
agricultural products is a mixed blessing since it brings in significant income but also puts a strain on essential water 
supplies. Significantly, the main agricultural products exported by Egypt, including cotton, oranges, and strawberries, 
have a considerable amount of virtual water [25,26]. The global demand for these items has intensified their cultivation, 
stressing Egypt’s water resources further [27]. The virtual water trade concept underlines the world water supply 
interconnection [28]. By exporting water-intensive crops, Egypt indirectly participates in global water redistribution 
[29]. While this may increase the economy, issues arise over the sustainability of such activities in a water-scarce society 
[30]. Moreover, VWE should be thoroughly supervised and regulated to ensure domestic water demands are addressed 
instead of promoting international commerce. The repercussions of virtual water exports also affect food security [28]. 
An overwhelming focus on export-oriented crops may limit staple crop output vital for home consumption, thus risking 
food security. This issue is particularly pertinent to Egypt, where population increase, and urbanization escalate the 
demand for food and water resources. Consequently, internal water footprint (IWF) and virtual water export changes are 
vulnerable to different effects, such as meteorological variability, economic policies, and global market movements [1,31]. 

Climate change, characterized by rising temperatures and shifting precipitation patterns, directly influences crop 
water requirements and, subsequently, the IWF. For example, droughts or lower Nile flows may considerably increase 
the IWF due to higher water needs for agricultural expansion. Conversely, excellent weather conditions might lower 
the water footprint by enhancing agricultural water use efficiency [32]. 

Economic variables also considerably affect crop selection and amounts, which in turn affect both the IWF and 
VWE [33]. Government subsidies and market price variations can influence the type and volume of produced crops 
[34]. For instance, government incentives to develop specific export-oriented crops may enhance virtual water exports, 
diverting water resources from crops with high internal water footprints. This can result in unsustainable water resource 
distribution, aggravating water scarcity [9,35]. Additionally, worldwide market changes influence Egyptian agricultural 
product demand, affecting virtual water export volumes [36]. Changes in worldwide demand for certain crops might 
lead to alterations in the planted types, altering the IWF and VWE. For example, increased global demand for Egyptian 
strawberries has led to expanding cultivation, compromising water supplies and long-term sustainability [37–39]. 
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Therefore, in this study, it will be seen if there is a fluctuation in the internal water footprint and, thus, a variation 
in the amount of water used in production, and this, in turn, leads to a change in the amount of virtual water exported 
from the crops (Rice, Maize, and Wheat) in Egypt during the period 2000–2018. This change will be studied statistically 
through a set of factors related to climate (annual average temperature and yearly average precipitation), crop 
productivity, and renewable water sources in Egypt. Specifically, the study focuses on the blue water footprint, which 
represents the volume of surface and groundwater consumed during crop production, and the green water footprint, 
which accounts for rainwater utilized by crops. The gray water footprint is not explicitly analyzed, as the primary 
emphasis is on the direct water consumption for agricultural activities and its implications for virtual water exports. 
Understanding these components enables a more precise assessment of how climate variability and water availability 
impact Egypt’s internal water footprint, thereby guiding more effective water management strategies. 

2. Materials and Methods 

2.1. Data Collection 

The research is based on published data from the Central Agency for Public Mobilization and Statistics (CAPMAS), 
the Ministry of Water Resources and Irrigation, the Ministry of Agriculture, and various issues of the Journal of 
Sustainable Agricultural Sciences (JSAS) published in Arabic in Egypt. These sources were used to assess the Internal 
Water Footprint [40,41]. The data from these references were utilized to calculate the internal water footprint. In 
addition, the data issued by the FAOSTAT were collected for the productivity of the crops and the FAO-AQUASTAT 
database for the renewable water resources, additionally for the Annual Average Temperature and Annual Average 
Precipitation were collected from the world bank database as well as the FAO-AQUASTAT database during the years 2000–
2018. See Appendix Table A1, Table A2 and Table A3 for the Rice, Maize, and Wheat, respectively. 

2.2. Reliability of the Data and the Methodology Used 

The research relied on to achieve the objective of the study and answering the research questions by following:  

 First, to check whether the time series data is suitable for scrutinizing the short and long-run effect of the set of 
covariates on the response variable measured at a time. 

 Second, the method was used to analyse and to see the variation of the four variables (RWr, Productivity, Ta and 
Precipitation) on the response variable IWFP is the quantitative economic analysis through the use of Nonlinear 
Autoregressive Distributed Lag (NARDL) by using EVIEWS software. 

2.3. Assessment of the Internal Water Footprint  

The estimation of the internal water footprint is based on the following data [42]: 

1. The Quantity of Water Used in Production = The Quantity of Production per ton X Water Requirements of the 
Crop per ton. 

2. The Quantity of Exported Virtual Water = The Quantity of Exported Crops per ton X the Water Requirement per ton. 
3. The Internal Water Footprint = The Quantity of Water Used in Production—The Quantity of Exported Virtual Water. 

Since the available data sources do not provide direct water footprint values but only water use data, the internal 
water footprint was derived using crop-specific water use estimates. The blue water footprint was estimated by 
considering the volume of irrigation water applied to each crop, while the green water footprint was determined based 
on rainwater contributions to crop growth. The water requirement per ton for each crop was obtained from established 
agricultural databases and literature. By applying these coefficients to production and export data, the study computed 
the internal water footprint for rice, maize, and wheat over the study period. This methodological approach ensures a 
reliable approximation of actual water use in Egypt’s agricultural sector, allowing for an accurate assessment of the 
impact of climate and water resource availability on internal water footprint fluctuations. 

2.4. NARDL Model Specification 

The autoregressive distributed lag (ARDL) model is commonly used to investigate the short- and long-run effects 
of explanatory variables on a dependent variable, particularly when the variables exhibit a mixed order of integration 
of at most one [43]. However, the standard ARDL model assumes that the effects of increasing and decreasing values 
of covariates on the dependent variable are symmetric, which may not always hold in reality. To address this limitation, 



Hydroecology and Engineering 2025, 2, 10004 4 of 13 

 

we employ the Nonlinear Autoregressive Distributed Lag (NARDL) model, as developed by [44], to examine the 
asymmetric effects of selected covariates on the Internal Water Footprint (IWFP) of three major crops: rice, maize, and 
wheat. In this study, the selection of explanatory variables—productivity, renewable water resources, temperature, and 
precipitation—is grounded in their direct and indirect influence on the water footprint of crops. The water footprint is 
largely determined by crop evapotranspiration, which is affected by climatic factors such as temperature and 
precipitation. Higher temperatures typically increase evapotranspiration rates, leading to a higher water footprint, 
whereas increased precipitation can reduce reliance on irrigation, potentially lowering the blue water footprint 
component [42]. Crop productivity is included as an essential variable, as a more water-efficient crop (higher yield per 
unit of water consumed) can influence the overall footprint. Renewable water resources serve as a proxy for water 
availability, which can impact irrigation practices and crop water consumption. 

It is important to clarify that our model does not suggest an inverse relationship between water footprint and 
evapotranspiration, as this would contradict physical principles. Instead, we account for potential nonlinear effects, 
where changes in temperature and precipitation may lead to asymmetric responses in water consumption depending on 
local conditions, irrigation efficiency, and crop-specific factors. These considerations align with established frameworks 
for water footprint assessments, as discussed in Ansorge (2024) [45]. Considering the variables mentioned above, the 
long-run NARDL model specification is given as follow: Equation (1) 

𝐼𝑊𝐹𝑃௧ = 𝛼 + 𝛼ଵ𝑃𝑟𝑜𝑑௧ + 𝛼ଶ𝑅𝑊𝑟௧ + 𝛼ଷ𝑇𝑎௧ + 𝛼ସ𝑃𝑟𝑒𝑝௧ + 𝜀௧ (1)

In Equation (1), 𝛼 = constant term, 𝛼ଵ − 𝛼ସ are the parameters of the model to be estimated. The independent 
variables Prod, RWr, Ta and Prep are used to denote production, renewable water resource, temperature, and 
precipitation, respectively. IWFP is the internal water footprint for a particular crop.  

In a situation in which the interest is to capture the possible asymmetry effect of each independent variable on the 
internal water footprint, each of the independent variables needed to be decomposed into a partial sum of positive and 
negative changes and included in the model as a separate variable [44]. For example, the partial sum of productivity is 
given as Equation (2). 

𝑃𝑟𝑜𝑑௧ିଵ
ା  =   ∆𝑃𝑟𝑜𝑑

ା

௧

ୀଵ

=  max(∆𝑃𝑟𝑜𝑑௧ , 0)

௧

ୀଵ

 

𝑃𝑟𝑜𝑑௧ିଵ
ି  =   ∆𝑃𝑟𝑜𝑑

ି

௧

ୀଵ

=  min(∆𝑃𝑟𝑜𝑑௧ , 0)

௧

ୀଵ

 

(2)

Specifically, the NARDL representation of Equation (3) has the following form: 

∆𝐼𝑊𝐹𝑃௧  =  𝛼 +  𝛼ଵ𝐼𝑊𝐹𝑃௧ିଵ +  𝛼ଶ𝑃𝑟𝑜𝑑௧ିଵ
ା + 𝛼ଷ𝑃𝑟𝑜𝑑௧ିଵ

ି  + 𝛼ସ𝑅𝑤𝑟௧ିଵ
ା + 𝛼ହ𝑅𝑤𝑟௧ିଵ

ି + 𝛼𝑇𝑎௧ିଵ
ା +

 𝛼𝑇𝑎௧ିଵ
ି + 𝛼଼𝑃𝑟𝑒𝑝௧ିଵ

ା +  𝛼ଽ𝑃𝑟𝑒𝑝௧ିଵ
ି + ∑ 𝛽∆𝐼𝑊𝐹𝑃௧ିଵ 

ୀଵ  
(3)

The long coefficients can be computed from the estimated model (3) by dividing the negative of the coefficient of 
the partial sum (i.e., each of 𝛼ଶ − 𝛼ଽ) by 𝛼ଵ, For example, the long coefficient of productivity is given as (−

ఈమ

ఈభ
) and 

(−
ఈయ

ఈభ
), respectively. 

To investigate the existence of long-run relationships or cointegration, a joint null hypothesis of (−
ఈమ

ఈభ
=  −

ఈయ

ఈభ
) 

was tested. The rejection of the hypothesis will indicate sufficient evidence for long-run asymmetry. 

2.5. Statistical Analysis 

The model described above was estimated to use EVIEWS statistical software version 9. Prior to the model 
estimation, preliminary time series testing was carried out. The steps involved are summarized below; 

(1) Unit root test was carried out on each of the variables to ascertain their order of integration; 
(2) A partial sum of all independent variables was computed; 
(3) The NARDL model was estimated for each crop (rice, maize, and wheat); 
(4) Wald F-test was conducted for nonlinear cointegration; 
(5) Asymmetries were checked in each of the estimated models. 
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3. Results 

3.1. Descriptive Statistics of the Variables 

The descriptive features of the variables under investigation were examined and summarized in terms of their 
minimum, mean and maximum values (Table 1). Precisely, the highest value of internal water footprint for rice, maize 
and wheat were recorded in the year 2008, 2011 and 2017, respectively. Also, the productivity of rice, maize, and wheat 
during the period under investigation was maximum in the years 2006, 2011, and 2017, respectively. It was noted that 
the internal water footprint and productivity were at their highest in the same year. However, this was not the pattern in 
the case of crops considered. Further, the peak value of temperature, renewable water resources and precipitation were 
recorded for the period under investigation in 2009, 2012 and 2017, respectively. 

Table 1. Variable’s summary statistics and determination of order of integration. 

Denomination Variables Minimum Mean Maximum Integration 

Internal Water Footprint 
Rice (IWFPRC) 5.32 7.39 10.56 I(0) 

Maize (IWFPMZ) 5.00 6.36 7.60 I(1) 
Wheat (IWFPWT) 3.80 5.58 7.60 I(1) 

Productivity 
Rice (ProdRC) 8826.50 9514.29 10,075.00 I(0) 

Maize (ProdMZ) 6979.80 7751.47 8370.50 I(1) 
Wheat (ProdWT) 5574.10 6462.25 6859.70 I(0) 

Temperature Ta (Celsius) 22.35 23.28 24.73 I(0) 
Renewable water resource RWr (billion m3) 51.80 54.35 57.12 I(1) 

Precipitation (mm) Prep (mm) 1.45 2.34 3.22 I(1) 

Source: Own calculation. 

As a custom in the analysis of time series data, the first statistical property tested is stationarity. This is important 
to determine the level of the integration of the variables under study and to avoid spurious regression. This study used 
the augmented Dickey Fuller (ADF) Test to establish the order of integration of the variables considered in the study. 
As shown in the last column of Table 1, the variables are a mix of stationery and integrated variables. For instance, 
IWFPRC, ProdRC, and Ta were stationary at level I(0), while RWr and Prep were integrated into order one, I(1). Also, 
IWFPMZ, ProdMZ, RWr and Prep were integrated into order one I(1), while Ta was a level stationary variable. Equally, 
IWFPWT, RWr and Prep were I(1) variables, while ProdWT and Ta were integrated into order zero.  

Due to the mixed order of integration among the variables, a nonlinear autoregressive distributed lag (NARDL) 
model was adopted, as it effectively handles such variables while capturing asymmetries. As discussed in the 
methodology section, the partial sum of each covariate was computed prior to the model estimation. For example, the 
partial sum of productivity was computed using the EVIEWS code below: 

 genr dprod = prod-prod(-1) 
 genr ros = dprod >= 0 
 genr dprod_p = ros*dprod 
 genr dprod_n = (1-ros)*dprod 
 genr prod_p = @cumsum(dprod_p) 
 genr prod_n = @cumsum(dprod_n). 

The prod_p and prod_n are the positive and negative values of productivity, respectively. This code was modified 
to compute the partial sum of other covariates included in the model. The result of three separate NARDL using the 
internal water footprint of each of rice, maize, and wheat the dependent variables were discussed in the next section. 

3.2. Analysis of Internal Water Footprint of Rice 

Table 2 shows the correlation analysis of water footprint with the independent variables. It was noted that each of 
the independent variables has a negative and insignificant relationship with the internal water footprint of rice (see 
column 1 of Table 2). The implication of this result is that there is an inverse relationship between these variables and 
internal water footprint. This implies that an increase in any of these variables will produce a decrease in the response 
variables (IWFPRC). 
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Table 2. Correlation analysis of internal water footprint of Rice and Covariates. 

Variables IWFPRC ProdRC RWr Ta Prep 
IWFPRC 1     
ProdRC −0.013 1    

RWr −0.022 −0.240 1   
Ta −0.110 −0.242 0.598 ** 1  

Prep −0.085 −0.358 −0.011 0.319 1 

Source: Own calculation. (**) The correlation coefficient between rainwater requirement (RWr) and temperature (Ta) is statistically 
significant at a specific confidence level 95%. This means the observed correlation (0.598) is unlikely to have occurred by chance, 
and there is a meaningful relationship between these two variables. 

The estimated coefficient of the NARDL model presented in Table 3 indicates that the lagged negative change of 
precipitation has a statistically significant effect on internal water footprint, while the lagged positive change is 
statistically insignificant. In this case, it can be deduced from the long-run coefficient that a unit negative change of 
precipitation leads to a 1.22 decrease in the internal water footprint. However, the asymmetry test failed to reject the 
hypothesis that the negative and the positive change of precipitation are statistically different in the long run. In terms 
of productivity, the lagged positive change is found to be significantly related to the internal water footprint at a 5% 
level with a long-run coefficient of 0.01. However, the long-run asymmetry of the lagged negative and the positive 
change in productivity was also not rejected. The renewable water resource produced a different result with a long-run 
coefficient of 1.54 and −3.74 for lagged negative and positive change, respectively. This indicates that a unit negative 
change in the RWr will lead to a 1.54 increase in the footprint of rice, while a unit point increase will reduce the footprint 
by 3.74. This implies that the impact of renewable water resources on the internal water footprint is asymmetric. Also, 
the impact of temperature on the internal water footprint is negative and asymmetric. 

Table 3. NARDL Model Estimate for Rice. 

Variables NARDL Coefficient p-Value Long Run Coefficient Long Run Asymmetry Test 
IWFP(−1) −0.84875 0.7961   

PREP_N(−1) −1.03591 0.0146 −1.22052 F = 0.098293 (0.7645) 
DF = (1, 6)  PREP_P(−1) −0.13394 0.6677 −0.15781 

PROD_N(−1) −0.01274 0.9273 −0.01501 F = 0.098293 (0.1211) 
DF = (1, 6) PROD_P(−1) 0.009528 0.0227 0.011226 

RWR_N(−1) 1.308942 0.1597 1.542207 F = 6.799207 (0.0403) 
DF = (1, 6) RWR_P(−1) −3.17963 0.2344 −3.74627 

TA_N(−1) −5.96533 0.0279 −7.02841 F = 1.633715 (0.2484) 
DF = (1, 6) TA_P(−1) −4.46399 0.0188 −5.25951 

Source: Own calculation. 

3.3. Analysis of Internal Water Footprint of Maize 

The correlation analysis result presented in Table 4 indicates that renewable water resources, temperature and 
precipitation have a positive relationship with the internal water footprint of maize. However, only the renewable water 
resource exhibited a statistically significant relationship at the 1% level. Whereas productivity has a negative and 
insignificant relationship with the dependent variable.  

Table 4. Correlation analysis of internal water footprint of Maize and Covariates. 

Variables IWFPMZ ProdMZ RWr Ta Prep 
IWFPMZ 1     
ProdMZ −0.135 1    

RWr 0.752 ** −0.051 1   
Ta 0.236 −0.177 0.598 ** 1  

Prep 0.089 −0.121 −0.011 0.319 1 
Source: Own calculation. (**) The correlation coefficient between rainwater requirement (RWr) and temperature (Ta) is statistically 
significant at a specific confidence level 95%. This means the observed correlation (0.598) is unlikely to have occurred by chance, 
and there is a meaningful relationship between these two variables. 

The NARDL estimated coefficient presented in Table 5 showed that only precipitation has an asymmetry impact 
on the internal footprint in relation to maize. The impact of the negative and positive change of other variables on the 
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internal water footprint appeared to be the same. In the case of precipitation, the estimated long-run coefficient for the 
lagged negative and positive change were found to be −0.6265 and 0.6242, respectively. This implies that a unit point 
increase will lead to a reduction of 0.6265, while a unit point increase will lead to a corresponding increase of 0.6242 
in the long run. 

Table 5. Estimation of Long-Run Coefficient for Maize Crop. 

Variables NARDL Coefficient p-Value Long-Run Coefficient Long Run Asymmetry Test 
IWFP(−1) −1.560684 0.0170   

PREP_N(−1) −0.977838 0.1338 −0.6265 F = 10.83628 (0.0133) 
DF = (1, 7) PREP_P(−1) 0.974150 0.0754 0.6242 

PROD_N(−1) −0.001016 0.3044 −0.0007 F = 0.008120 (0.9307) 
DF= (1, 7) PROD_P(−1) −0.001143 0.1666 −0.0007 

RWR_N(−1) 0.545360 0.1001 0.3494 F = 1.969594 (0.2033) 
DF = (1, 6) RWR_P(−1) −0.336282 0.3772 −0.2155 

TA_N(−1) −0.260960 0.5345 −0.1672 F = 0.256986 (0.6278) 
DF = (1, 7) TA_P(−1) −0.450594 0.4773 −0.2887 

Source: Own calculation. 

3.4. Analysis of Internal Water Footprint of Wheat 

The correlation analysis table presented in Table 6 showed that all the independent variables have positive and 
insignificant relationships with the exemption of renewable water resources, which is positive and statistically related 
to the internal water footprint of wheat crops. It is also noted that the relationship between a pair of independent variables 
is moderate, indicating multicollinearity. 

Table 6. Correlation analysis of internal water footprint of rice and Covariates. 

Variables IWFPWT ProdWT RWr Ta Prep 
IWFPWT 1     
ProdWT 0.317 1    

RWr 0.715 ** 0.090 1   
Ta 0.364 0.041 0.598 ** 1  

Prep 0.254 0.130 −0.011 0.319 1 

Source: Own calculation. (**) The correlation coefficient between rainwater requirement (RWr) and temperature (Ta) is statistically 
significant at a specific confidence level 95%. This means the observed correlation (0.598) is unlikely to have occurred by chance, 
and there is a meaningful relationship between these two variables. 

The estimated NARDL coefficient for wheat crop internal water footprint is presented in Table 7. It is noted that 
the negative and positive change in each of the independent variables produces a similar impact on the response variable 
with the exemption of temperature, in which the asymmetric impact of the negative and positive change was noticed.  

Table 7. Estimation of Long-Run Coefficient for Wheat Crop. 

Variables NARDL Coefficient p-Value Long-Run Coefficient Long Run Asymmetry Test 
IWFP(−1) −0.935225 0.0337   

PREP_N(−1) 0.168774 0.6985 0.1805 F = 0.549912 (0.4825) 
DF = (1, 7)  PREP_P(−1) 0.466101 0.1570 0.4984 

PROD_N(−1) 0.000901 0.0823 0.0010 F = 0.521211 (0.4937) 
DF = (1, 7) PROD_P(−1) 0.000450 0.3944 0.0005 

RWR_N(−1) 0.350629 0.1798 0.3749 F = 0.549806 (0.4825) 
DF = (1, 7) RWR_P(−1) 0.025536 0.9176 0.0273 

TA_N(−1) −0.186522 0.6037 −0.1994 F = 10.17358 (0.0153) 
DF = (1, 7) TA_P(−1) 0.800662 0.0399 0.8561 

Source: Own calculation. 

Summarily, the asymmetrical impact of renewable water resources, precipitation and temperature was established 
in the rice, maize, and wheat models, respectively. 
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4. Discussion 

The results of this study reveal important insights into the internal water footprint (IWF) of rice, maize, and wheat, 
and how these are influenced by climatic and agricultural variables such as renewable water resources, precipitation, 
temperature, and productivity. The findings highlight both the complexity and the asymmetry of these relationships, 
providing a foundation for understanding how water use in agriculture can be managed more sustainably under varying 
climatic conditions. One of the key findings is the relationship between crop productivity and internal water footprint. 
For all three crops, peak productivity and peak IWF were observed in specific years, with rice and wheat showing 
alignment between these peaks. For example, rice productivity and IWF were highest in 2006 and 2008, respectively, 
while wheat showed peak values for both in 2017. This suggests that higher agricultural output in certain years is 
associated with increased water use, emphasizing the trade-off between productivity and water resource utilization. This 
finding is particularly relevant for regions facing water scarcity, as it underscores the need for strategies that optimize 
water use efficiency without compromising crop yields. 

The study also uncovered significant asymmetric effects of climatic variables on the IWF of the crops. For rice, 
renewable water resources (RWr) and temperature had notable asymmetric impacts. A unit increase in RWr led to a 
substantial reduction in IWF (by 3.74), while a unit decrease resulted in a smaller increase (by 1.54). This indicates that 
the availability of renewable water resources plays a critical role in determining the water footprint of rice, with water 
scarcity disproportionately increasing IWF. Similarly, temperature had a negative and asymmetric impact on rice, with 
a unit increase reducing IWF by 5.26. This suggests that higher temperatures may reduce water use for rice, possibly 
due to accelerated growth cycles or changes in evapotranspiration rates. However, this finding also raises concerns 
about the potential trade-offs between water use and crop stress under warming conditions. 

The findings of this study underscore the intricate relationship between available water resources, irrigation 
practices, and crop water consumption, particularly in a controlled irrigation system such as Egypt’s. While renewable 
water resources are included as a key explanatory variable in our model, it is important to demonstrate their direct and 
indirect effects on irrigation and crop water consumption.  

Previous research highlights that fluctuations in water availability influence irrigation intensity and cropping 
patterns. For example, Mekonnen and Hoekstra (2016) found that declining water availability in water-scarce regions 
leads to shifts in irrigation strategies, including the reduction of high water-consuming crops like rice [46]. Similarly, 
El-Sadek (2014) and Alobid (2022) noted that when the Nile water supply diminishes, Egyptian farmers often adjust 
irrigation frequencies and volumes, which directly affects crop water consumption [47,48]. 

Our study extends these findings by applying the NARDL approach, which reveals that changes in available 
renewable water resources do not have a symmetric effect on IWFP. For instance, an increase in renewable water 
resources is associated with a significant decrease in the IWFP of rice, maize, and wheat, indicating that greater water 
availability leads to more efficient irrigation and reduced water stress. However, a decline in water resources results in 
a less pronounced increase in IWFP, suggesting that farmers implement adaptive strategies such as deficit irrigation to 
mitigate water shortages. 

For maize, precipitation emerged as the most influential variable, exhibiting a significant asymmetric effect. A unit 
increase in precipitation reduced the IWF by 0.63, while a unit decrease increased it by 0.62. This highlights the 
sensitivity of maize to changes in rainfall patterns, making it particularly vulnerable in regions with erratic or declining 
precipitation. These results emphasize the importance of irrigation management and water storage solutions for maize 
cultivation, especially in areas prone to drought. 

In the case of wheat, temperature was the only variable with a significant asymmetric effect. A unit increase in 
temperature led to a 0.86 rise in IWF, indicating that wheat production becomes more water-intensive under warmer 
conditions. This finding is concerning in the context of climate change, as rising temperatures could exacerbate water 
use in wheat cultivation, particularly in arid and semi-arid regions. The results suggest that developing heat-tolerant 
wheat varieties and optimizing planting schedules may be crucial for reducing water use in the face of global warming. 

Furthermore, while irrigation is the dominant water use sector in Egypt, it does not account for 100% of renewable 
water resources. Water is also allocated to domestic, industrial, and environmental uses, which may influence the 
observed relationship between water availability and agricultural consumption [49]. Despite this, agriculture remains 
the largest consumer, with irrigation efficiency improvements playing a critical role in mitigating the impact of water 
shortages [3]. According to FAO (2020), irrigation efficiency in Egypt has improved in recent years through 
technological advancements, yet the system remains vulnerable to fluctuations in Nile water inflows [50]. 
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The correlation analysis further enriched our understanding of these relationships. For rice, all independent 
variables had negative but insignificant relationships with IWF, suggesting a weak inverse association. In contrast, 
maize and wheat showed positive relationships with renewable water resources, with maize exhibiting a statistically 
significant correlation. These findings highlight the differential impacts of climatic and agricultural factors on the water 
footprint of each crop, reinforcing the need for crop-specific water management strategies. 

The implications of these findings are significant for sustainable water management in agriculture. The asymmetric 
effects of climatic variables on IWF suggest that policymakers and farmers need to adopt tailored strategies to mitigate 
the impacts of climate variability. For rice, improving irrigation efficiency and promoting water-saving technologies 
could help reduce IWF, particularly in years of high productivity. For maize, enhancing rainwater harvesting and storage 
systems could mitigate the adverse effects of precipitation variability. For wheat, developing heat-tolerant varieties and 
optimizing planting schedules could help reduce water use under rising temperatures. 

Furthermore, the study underscores the importance of integrating climate resilience into agricultural planning. By 
understanding the asymmetric impacts of climatic variables, stakeholders can design more effective adaptation 
strategies to ensure food security and water sustainability in the face of climate change. For instance, policymakers 
could prioritize investments in water infrastructure, such as reservoirs and drip irrigation systems, to buffer against 
variability in renewable water resources and precipitation. Similarly, agricultural extension services could promote best 
practices for water use efficiency, such as precision agriculture and soil moisture conservation techniques. 

5. Conclusions and Recommendations 

Agriculture is a substantial contributor to water scarcity in Egypt, accounting for 76.7 percent of all water 
withdrawal activities. However, improvements can be made in water use for food production, such as picking legume 
crops with smaller water footprints. Egypt is anticipated to experience water scarcity by 2025, and it cannot meet food 
demand by relying on Nile water for agriculture due to population increase, desert land reclamation programs, and 
imported grain. Lake Nasser’s surface water evaporation rate is estimated to be higher than originally predicted, leading 
to a deficit in the national water budget of nearly 19.5 billion cubic meters. 

Climate change has also affected Egypt’s water resources pressure, with economic changes in upstream countries 
increasing water resources demand. The Nile is vulnerable to fluctuations in temperature and precipitation, especially 
due to its low runoff/precipitation rate. This study investigated the internal water footprint of three critical crops in 
Egypt (rice, maize, and wheat) for 19 years, assessing average annual temperatures, precipitation, renewable water 
resources, and crop yield. 

The study indicated that rice, maize, and wheat had the highest internal water footprint values in 2008, 2011, and 
2017, respectively. The productivity of these crops was highest in 2006, 2011, and 2017, with the largest internal water 
footprint and productivity seen in the same year. The influence of temperature on the interior water footprint was 
negative and asymmetric. For maize, renewable water resources, temperature, and precipitation had positive 
associations with the internal water footprint, but only precipitation had an asymmetric impact. 

Appendix 1. (Table A1, Table A2 and Table A3) for the Rice, Maize, and Wheat Crops Respectively 

Table A1. The Data Were Used in the Model to Analyse the IWFP Variation for the Rice Crop. 

Year 
Rice Crop 

IWFP RWr Productivity Ta Precipitation 
Billion m3 Billion m3 year−1 Kg/Ha Celsius mm 

2000 7.89 52.08 9102.50 23.1285 3.21577 
2001 7.21 51.80 9283.30 23.1901 1.89678 
2002 6.43 52.26 9388.90 22.3457 2.3418 
2003 7.49 52.66 9748.40 23.0467 1.45347 
2004 6.86 52.17 9838.40 23.1941 2.59356 
2005 6.85 53.09 9987.40 23.0280 1.96633 
2006 5.80 53.38 10,075.00 23.0661 2.19336 
2007 7.46 53.21 9767.50 23.0779 2.71153 
2008 10.56 54.17 9734.90 22.9806 1.91344 
2009 9.99 55.10 9593.00 23.1440 2.02872 
2010 6.86 55.42 9421.70 23.5117 2.33414 
2011 7.19 56.29 9567.00 23.4048 1.94263 
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2012 5.93 57.12 9529.60 24.7271 2.69287 
2013 5.32 56.63 9586.50 22.8719 1.96707 
2014 9.04 56.17 9530.00 23.5320 2.1495 
2015 8.63 55.11 9431.20 23.3878 3.02228 
2016 6.71 54.29 9335.30 23.6309 3.16321 
2017 7.32 55.66 9024.50 23.5347 2.83109 
2018 6.85 56.12 8826.50 23.5437 2.11474 

Table A2. The Data Were Used in the Model to Analyse the IWFP Variation for the Maize Crop. 

Year 
Maize Crop 

IWFP RWr Productivity Ta Precipitation 
Billion m3 Billion m3 year−1 Kg/Ha Celsius mm 

2000 5.00 52.08 7680.00 23.1285 3.21577 
2001 5.40 51.80 6979.80 23.1901 1.89678 
2002 5.60 52.26 7765.60 22.3457 2.3418 
2003 5.30 52.66 7829.30 23.0467 1.45347 
2004 5.60 52.17 7908.70 23.1941 2.59356 
2005 5.80 53.09 8160.70 23.0280 1.96633 
2006 5.80 53.38 8370.50 23.0661 2.19336 
2007 6.20 53.21 8046.30 23.0779 2.71153 
2008 6.60 54.17 7905.30 22.9806 1.91344 
2009 7.00 55.10 7818.40 23.1440 2.02872 
2010 6.70 55.42 7270.00 23.5117 2.33414 
2011 7.60 56.29 7740.90 23.4048 1.94263 
2012 5.90 57.12 7772.30 24.7271 2.69287 
2013 7.00 56.63 7722.30 22.8719 1.96707 
2014 7.20 56.17 7755.60 23.5320 2.1495 
2015 7.40 55.11 7354.60 23.3878 3.02228 
2016 7.10 54.29 7607.10 23.6309 3.16321 
2017 7.30 55.66 7789.50 23.5347 2.83109 
2018 6.40 56.12 7801.00 23.5437 2.11474 

Table A3. The Data Were Used in the Model to Analyse the IWFP Variation for the Wheat Crop. 

Year 
Wheat Crop 

IWFP RWr Productivity Ta Precipitation 
Billion m3 Billion m3 year−1 Kg/Ha Celsius mm 

2000 3.90 52.08 6342.20 23.1285 3.21577 
2001 3.80 51.80 6358.00 23.1901 1.89678 
2002 3.90 52.26 6434.50 22.3457 2.3418 
2003 4.20 52.66 6500.10 23.0467 1.45347 
2004 4.40 52.17 6556.70 23.1941 2.59356 
2005 4.70 53.09 6492.90 23.0280 1.96633 
2006 5.60 53.38 6430.30 23.0661 2.19336 
2007 5.10 53.21 6467.30 23.0779 2.71153 
2008 5.40 54.17 6503.10 22.9806 1.91344 
2009 5.30 55.10 6382.90 23.1440 2.02872 
2010 5.30 55.42 5574.10 23.5117 2.33414 
2011 5.10 56.29 6542.80 23.4048 1.94263 
2012 5.40 57.12 6582.30 24.7271 2.69287 
2013 7.10 56.63 6668.20 22.8719 1.96707 
2014 7.30 56.17 6175.20 23.5320 2.1495 
2015 7.10 55.11 6591.90 23.3878 3.02228 
2016 7.50 54.29 6631.10 23.6309 3.16321 
2017 7.60 55.66 6859.70 23.5347 2.83109 
2018 7.40 56.12 6689.50 23.5437 2.11474 

Acknowledgments 

The authors sincerely appreciate the editors and reviewers for their thorough review and insightful suggestions. 
  



Hydroecology and Engineering 2025, 2, 10004 11 of 13 

 

Author Contributions 

Conceptualization, M.A. and I.S.; methodology, M.A. and O.O.A.; software, M.A. and O.O.A.; validation, M.A.; 
formal analysis, M.A. and O.O.A.; investigation, M.A. and I.S.; resources, M.A.; data curation, M.A. and O.O.A.; 
writing—original draft preparation, M.A.; writing—review and editing, I.S. and O.O.A.; visualization, I.S. and M.A.; 
supervision, I.S. project administration, M.A. and I.S. funding acquisition, I.S. All authors have read and agreed to the 
published version of the manuscript. 

Ethics Statement 

Not applicable. 

Informed Consent Statement 

Not applicable. 

Data Availability Statement 

The data used in this study primarily comes from the resources mentioned in the material and methods, all of which 
are included in the paper. 

Funding 

This research received no external funding. 

Declaration of Competing Interest 

The authors declare no conflicts of interest. 

References 

1. Oestigaard T. Water Scarcity and Food Security along the Nile: Politics, Population Increase and Climate Change; Nordiska 
Afrikainstitutet: Uppsala, Sweden, 2012. ISBN: 978-91-7106-722-7. 

2. Abd Ellah RG. Water resources in Egypt and their challenges, Lake Nasser case study. Egypt. J. Aquat. Res. 2020, 46, 1–12. 
3. Fouad SS, Heggy E, Ramah M, Abotalib AZ, Palmer EM, Jomaa S, et al. Egypt’s waterways conservation campaigns under 

growing intrinsic demand and Nile upstream damming. J. Hydrol. Reg. Stud. 2023, 50, 101537. 
4. Khedr M. Challenges and issues in water, climate change, and food security in Egypt. In Conventional Water Resources and 

Agriculture in Egypt; Springer: Cham, Switzerland, 2019; pp. 229–243. 
5. Negm AM. Conventional Water Resources and Agriculture in Egypt; Springer: Berlin/Heidelberg, Germany, 2019. ISBN: 978-

3-319-95064-8. 
6. Swelam A, Farag A, Ramasamy S, Ghandour A. Effect of climate variability on water footprint of some grain crops under 

different agro-climatic regions of Egypt. Atmosphere 2022, 13, 1180. 
7. Yehia AG, Mehany MA, Fareed AM, El-sayed WH, Taman MS. The role of water safety plan (WSP) to enhance the 

compatibility in water sector, Egypt. World Water Policy 2024, 10, 524–552. 
8. Hoekstra AY. Virtual water: An introduction. Virtual Water Trade 2003, 13, 108. 
9. Hoekstra AY, Hung PQ. Virtual water trade. In Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, 

The Netherlands, 12–13 December 2003. 
10. Hoekstra AY, Chapagain A, Martinez-Aldaya M, Mekonnen M. Water Footprint Manual: State of the Art 2009; Water 

Footprint Network: Enschede, The Netherlands, 2009. 
11. Hoekstra AY. The Water Footprint of Modern Consumer Society; Routledge: London, UK, 2019. 
12. Hoekstra AY. The water footprint of industry. In Assessing and Measuring Environmental Impact and Sustainability; Elsevier: 

Amsterdam, The Netherlands, 2015; pp. 221–254. 
13. Mekonnen MM, Hoekstra AY. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. 

Sci. 2011, 15, 1577–1600. 
14. Lamptey S. Agronomic practices in soil water management for sustainable crop production under rain fed agriculture of 

Drylands in Sub-Sahara Africa. Afr. J. Agric. Res. 2022, 18, 18–26. 
15. Mekonnen MM, Hoekstra AY. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads 

to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. 
16. Liu Y, Gupta H, Springer E, Wagener T. Linking science with environmental decision making: Experiences from an integrated 

modeling approach to supporting sustainable water resources management. Environ. Model. Softw. 2008, 23, 846–858. 



Hydroecology and Engineering 2025, 2, 10004 12 of 13 

 

17. Elbeltagi A, Aslam MR, Malik A, Mehdinejadiani B, Srivastava A, Bhatia AS, et al. The impact of climate changes on the 
water footprint of wheat and maize production in the Nile Delta, Egypt. Sci. Total Environ. 2020, 743, 140770. 

18. Zhang L, Yu Y, Malik I, Wistuba M, Sun L, Yang M, et al. Water Resources Evaluation in Arid Areas Based on Agricultural 
Water Footprint—A Case Study on the Edge of the Taklimakan Desert. Atmosphere 2022, 14, 67. 

19. Alobid M, Derardja B, Szűcs I. Food Gap Optimization for Sustainability Concerns, the Case of Egypt. Sustainability 2021, 
13, 2999.  

20. Amer MH, Abd El Hafez SA, Abd El Ghany MB. Water Saving in Irrigated Agriculture in Egypt; LAP LAMBERT Academic 
Publishing: Saarbrücken, Germany, 2017. 

21. Ashour MA, El Degwee YA, Hashem RH, Abdou AA, Abu-Zaid TS. The Extent to Which the Available Water Resources in 
Upper Egypt Can Be Affected by Climate Change. Limnol. Rev. 2024, 24, 164–177.  

22. Hamzawy A, Al-Mailam M, Arkeh J. Climate Change in Egypt: Opportunities and Obstacles. Carnegie Endowment for 
International Peace. 2023. Available online: https://policycommons.net/artifacts/6935728/climate-change-in-egypt/7844253/ 
(accessed on 26 October 2023). 

23. Abou-Ali H, Elayouty A, Mohieldin M. Climate Action in Egypt. In Keys to Climate Action; The Brookings Institution: 
Washington, DC, USA, 2023; Volume 57. 

24. Wehrey F, Dargin J, Mehdi Z, Muasher M, Yahya M, Kayssi I, et al. Climate Change and Vulnerability in the Middle East. 
Carnegie Endowment for International Peace. 2023. Available online: https://policycommons.net/artifacts/4430668/climate-
change-and-vulnerability-in-the-middle-east/5227290/ (accessed on 6 July 2023). 

25. Lewis LN, Maruéjol F. Egypt’s Future Depends on Agriculture and Wisdom. Self-Published. 2011. ISBN: 978-9981263451. 
Available online: https://haqeeqat.pk/roots/00.Arabic%20Text/012.%20Yusuf%20alahissalam/egyptian_agricultureV1.pdf 
(accessed on 26 October 2023). 

26. Shehata GAB, Srour AHI, Oraby SAMS, El SE-SE-S, Zahran HA-EM. Virtual Water Trade in Egyptian Agricultural Sector 
in the Light of Scarcity of Water Resources. Open J. Soc. Sci. 2023, 11, 162–189. 

27. Torayeh NM. The competitiveness of the Egyptian agricultural export in the EU market: Should Egypt diversify its trade 
pattern. Appl. Econom. Int. Dev. 2013, 13, 129–148. 

28. Vallino E, Ridolfi L, Laio F. Trade of economically and physically scarce virtual water in the global food network. Sci. Rep. 
2021, 11, 22806. 

29. Abdelzaher M, Awad MM. Sustainable development goals for the circular economy and the water-food nexus: Full 
implementation of new drip irrigation technologies in upper Egypt. Sustainability 2022, 14, 13883. 

30. Kühlert M, Klingen J, Gröne K, Hennes L, Terrapon-Pfaff JC, Jamea EM, et al. Pathways towards a Green Economy in Egypt; 
Wuppertal Institut für Klima, Umwelt, Energie: Wuppertal, Germany, 2024. 

31. Conforti P, Ahmed S, Markova G. Impact of Disasters and Crises on Agriculture and Food Security, 2017; FAO: Rome, Italy, 
2018. 

32. Turral H, Burke J, Faurès J-M. Climate Change, Water and Food Security; Food and Agriculture Organization of the United 
Nations: Rome, Italy, 2011. ISBN: 978-92-5-106795-6.  

33. Higazy N, Merabet S, Khalifa R, Saleh A, Al-Sayegh S, Hosseini H, et al. Water Footprint Assessment and Virtual Water Trade 
in the Globally Most Water-Stressed Country, Qatar. Water 2024, 16, 1185. 

34. Lencucha R, Pal NE, Appau A, Thow A-M, Drope J. Government policy and agricultural production: A scoping review to 
inform research and policy on healthy agricultural commodities. Glob. Health 2020, 16, 11. 

35. Yin J, Li X, Engel BA, Ding J, Xing X, Sun SK, et al. Inter-regional food-water-income synergy through bi-level crop 
redistribution model coupled with virtual water: A case study of China’s Hetao Irrigation District. Water Resour. Res. 2024, 
60, e2023WR036572. 

36. Wichelns D. The role of ‘virtual water’in efforts to achieve food security and other national goals, with an example from Egypt. 
Agric. Water Manag. 2001, 49, 131–151. 

37. Abdel Monem MA, Radojevic B. Agricultural production in Egypt: Assessing vulnerability and enhancing adaptive capacity 
and resilience to climate change. In Climate Change Impacts on Agriculture and Food Security in Egypt: Land and Water 
Resources—Smart Farming—Livestock, Fishery, and Aquaculture; Springer International Publishing: Cham, Switzerland, 
2020; pp. 205–222. 

38. Aguilar-Restrepo J, Lozano-Gracia N, Hernández TES, Genoni ME, Rodríguez CC. Egypt CCDR. Available online: 
https://documents1.worldbank.org/curated/en/099222103142334430/pdf/P17729204e82fa0ae0b40a042bd9ac1cc4e.pdf 
(accessed on 15 October 2023). 

39. Waldhauber N, Poelman M, Blom-Zandstra M. Chain Strategies for the Agrologistic Sector in Egypt: The Examples of 
Hydroponics Vegetables, Aquaculture and Soft Fruit; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 
2016; 35p. ISBN: 978-94-6257-720-6. 

40. Jomaa NFA, Allah NF, Mustafa, Mohamed H. Economic Study of the Water Situation in Egypt. J. Agric. Econ. Soc. Sci. 2020, 
11, 509–519. (In Arabic) 



Hydroecology and Engineering 2025, 2, 10004 13 of 13 

 

41. Issam A. The Role of Virtual Water Trade in Water Challenges in the Middle East. J. Fac. Econ. Political Sci. 2022, 23, 123. 
(In Arabic) 

42. Hoekstra AY, Chapagain AK, Mekonnen MM, Aldaya MM. The Water Footprint Assessment Manual: Setting the Global 
Standard; Routledge: London, UK, 2011. 

43. Ndoricimpa A. Analysis of asymmetries in the nexus among energy use, pollution emissions and real output in South Africa. 
Energy 2017, 125, 543–551. 

44. Shin Y, Yu B, Greenwood-Nimmo M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL 
Framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Horrace WC, Sickles RC, Eds.; 
Springer: New York, NY, USA, 2014; pp. 281–314. 

45. Ansorge L. White or blue water footprint? Components of water footprint model of crops. Water Int. 2024, 49, 846–848. 
46. Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. 
47. Alobid M, Szűcs I. Appraising the Water Status in Egypt Through the Application of the Virtual Water Principle in the 

Agricultural Sector. In Environmental Footprints of Crops; Muthu SS, Ed.; Springer Nature: Singapore, 2022; pp. 27–50. 
doi:10.1007/978-981-19-0534-6_2. 

48. El-Sadek A. Water use optimisation based on the concept of Partial Rootzone Drying. Ain Shams Eng. J. 2014, 5, 55–62. 
49. Wahba SM, Scott K, Steinberger JK. Analyzing Egypt’s water footprint based on trade balance and expenditure inequality. J. 

Clean. Prod. 2018, 198, 1526–1535. doi:10.1016/j.jclepro.2018.06.266. 
50. Aquastat FAO. FAO’s Global Information System on Water and Agriculture; Food and Agriculture Organization: Rome, Italy, 

2020. 


