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ABSTRACT: This paper presents a method for fault tolerant control of quadrotor UAVs in case of inversion of the torque direction, a situation that 

might occur due to structural, hardware or software issues. The proposed design is based on multiple-model ℒ1 adaptive control. The controller is 

composed of a nominal reference model and a set of degraded reference models. The nominal model is that with desired dynamics that are optimal 

regarding some specific criteria. In a degraded model, the performance criteria are reduced. It is designed to ensure system robustness in the presence 

of critical failures. The controller is tested in simulations and it is shown that the multiple model ℒ1 adaptive controller stabilizes the system in case of 

inversion of the control input, while the ℒ1 adaptive controller with a single nominal model fails. 
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1. Introduction 

Quadrotor Unmanned Aerial Vehicles (UAVs) have gained enormous interest because of their low cost, high maneuverability and 

simple maintenance. They are used for a wide range of military and civilian tasks. The primary reason for this seems to be the mechanical 

simplicity of the aircraft compared to traditional rotorcraft, resulting in significantly lower costs. Although lacking inherent stability, 

the simplicity also means that the aircraft is relatively easy to control using automatic feedback, particularly for non-aggressive 

maneuvers in calm conditions. For example, [1] demonstrated satisfactory results with a Proportional Integral Derivative (PID) 

controller, while authors in [2] were able to control the attitude using just Proportional Derivative (PD) control, employing a quaternion 

description. Simulation results have shown that even high-upset angles can be controlled effectively using PD control [3]. Linear 

Quadratic Regulator (LQR) control [4,5] can be used to achieve satisfactory trajectory tracking and attitude control. 

The operation of quadrotors, especially in urban environments, needs a high degree of safety and reliability. However, quadrotors 

are generally built with low-cost components and materials, which increases the probability of occurrence of faults and failures. Hence, 

the design of fault-tolerant control systems is required. Fault-tolerant control is defined as a system that possesses the ability to 

accommodate failures automatically [6]. A recent review of fault-tolerant control of quadrotors can be found in [7,8] and references 

therein. 

Fault-tolerant control systems are divided into two categories, passive and active [9,10]. Passive fault-tolerant control uses robust 

control techniques that assume worst-case conditions [11–15], resulting in conservative controllers with limited performance [16]. In 

contrast, active fault-tolerant controllers incorporate a fault detection scheme and a supervision module that can reconfigure the 

controller based on the detected fault [10,11,17]. However, implementing active fault-tolerant control systems on small UAVs is 

challenging due to their limited computing resources. 

Adaptive control provides a compromise between passive and active fault-tolerant control by allowing the reconfiguration of 

controller parameters without an explicit fault detection module [18–23]. However, ensuring a transient response guarantee is critical 

for adaptive control in fault-tolerant systems, as poor tracking performance may occur before ideal asymptotic convergence if such a 
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guarantee is absent [24]. Additionally, high-gain feedback cannot be used to achieve transient performance improvement, as it can 

compromise the robustness of the closed-loop system. However, most adaptive control methods focus on the asymptotic performance, 

and do not provide transient performance guarantees without using high-gain feedback [25]. 

One solution to this issue is based on ℒ1 adaptive control [26]. The ℒ1 adaptive control architecture decouples the estimation loop 

from the control loop through the introduction of a low-pass filter. As a result, arbitrarily fast adaptation can be used without sacrificing 

system robustness. These characteristics make it suitable for systems with unknown dynamics and subject to possible faults and external 

disturbances, such as quadrotors. Successful applications of ℒ1 adaptive control to rotorcraft UAVs have been presented [27–37]. 

A critical situation in rotorcraft control systems is that in case of structural damage of the rotorcraft, the direction of the torque 

produced by the propellers can be inverted. For instance, if an axis of a motor is twisted, the torque signs will go in the opposite direction. 

Another situation is the inversion of the rotor pitch angle that is directly proportional to the torque. The inversion of the sign of the 

torque direction can also result from the inversion of the sign of the rotation due to actuator failures or software faults. This situation 

cannot be handled by the standard ℒ1 adaptive controller with a single model. Actually, a conservative condition in adaptive control is 

that the sign of control effectiveness must be known and should not change [38]. 

The proposed solution is based on the application of the multiple model ℒ1 adaptive controller [39]. The key idea is to design an 

ℒ1 adaptive controller with a nominal reference model and a set of degraded reference models. The nominal model is the model with 

desired dynamics that are optimal regarding some specific criteria. A degraded model does not necessarily meet these specifications. It 

is designed to ensure system robustness in the presence of large uncertainties. 

This multiple-model ℒ1 adaptive control design is capable of expanding the performance of the ℒ1 adaptive control schemes to 

effectively deal with plant hard failures such as the inversion of the control direction (a long-standing issue that is difficult for a single-

model adaptive controller to deal with) which may be caused by uncertain system structural damage and component (actuator or sensor) 

failures. 

The main contributions of this paper are: 

• Analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque. 

• The application of the multiple model ℒ1 adaptive controller, which involves designing an ℒ1 adaptive controller with a nominal 

reference model and a set of degraded reference models to handle situations where the direction of the torque produced by the 

propellers can be inverted. 

Simulation results show that the multiple model ℒ1 adaptive controller outperforms the classical controller with a single nominal 

model in case of inversion of the propeller torque direction. 

2. ℒ1 Adaptive Control of Quadrotors 

In this section the main results of ℒ1 adaptive control of quadrotors are recalled. The objective is to elaborate the mathematical 

framework for quadrotor hard failure analysis. 

2.1. Quadrotor Mathematical Model 

First is recalled the mathematical model of the quadrotor from [35]. It is based on the Newton-Euler approach with standard 

assumptions: 

• Rigid and symmetric body structure, 

• rigid propeller blades, 

• parallel rotor axis in vertical direction. 

The basic vehicle configuration, Earth frame, 𝐸, and body frame, 𝐵, are shown in Figure 1 The body frame has the axes originating 

at the center of mass of the vehicle. An inertial coordinate frame is fixed to the Earth and has axes in the conventional North-East-Down 

arrangement. It is assumed that the Earth is flat and stationary. Each rotor provides a thrust force, 𝑓𝑖, and torque, 𝜏𝑖. These combine to 

a vector of moments about the body axis, 𝐌 = [𝐿,𝑀,𝑁] and a thrust force in the negative 𝑧-direction, −𝑇. 

The orthogonal rotation matrix 𝐒𝑏 to transform from body frame to Earth frame is 

𝐒𝑏 = [

𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃
𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 𝑐𝜃𝑠𝜙
𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜃𝑐𝜙

], (1) 

where 𝑐𝜃 denotes cos 𝜃 , 𝑠𝜃 denotes sin 𝜃, etc., and (𝜙, 𝜃, 𝜓) is the standard Euler angle roll-pitch-yaw triplet. 

The gravitational force vector, 𝐅𝑔, in the body axis is 
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𝐅𝑔 = 𝑚𝐒𝑏 [
0
0
𝑔
] = 𝑚𝑔 [

−𝑠𝜃
𝑐𝜃𝑠𝜙
𝑐𝜃𝑐𝜙

], (2) 

where 𝑔 is gravitational field constant which is taken as 𝑔 = 9.81 N kg−1. 

The Newton-Euler equations of motion of the body axes frame are 

𝐅  = 𝑚�̇� + 𝜔 ×𝑚𝐕,
𝐌  = 𝐈�̇� + 𝜔 × 𝐈𝜔

 (3) 

where 𝐕 = [𝑈, 𝑉,𝑊]𝑇 is the vector of velocities in the body frame, 𝜔 = [𝑃, 𝑄, 𝑅]𝑇 is the vector of angular rates in the body frame, 𝐈 =

diag(𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧) is the moments of inertia matrix, 𝑚 is the mass of the vehicle, 𝐅 = 𝐅𝑔 + [0,0, −𝑇]
𝑇 is the vector of the forces acting on 

the center of mass, and 𝐌 = [𝐿,𝑀,𝑁]𝑇  is the vector of moments acting about the center of mass. 

A general state space model is obtained from [35] with state variables given by 

𝐱 = [𝑈 𝑉 𝑊 𝑃 𝑄 𝑅 𝑋 𝑌 𝑍 𝜙 𝜃 𝜓]𝑇 . (4) 

The resulting model is 

[
 
 
 
 
 
 
 
 
 
 
 
 
�̇�
�̇�
�̇�
�̇�
�̇�

�̇�
�̇�
�̇�
�̇�
�̇�

�̇�
�̇� ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−𝑔 𝑠𝜃 − (𝑄𝑊 − 𝑅𝑉)

𝑔 𝑐𝜃𝑠𝜙 − (𝑅𝑈 − 𝑃𝑊)

−
𝑇

𝑚
+ 𝑔𝑐𝜃𝑐𝜙 − (𝑃𝑉 − 𝑄𝑈)

𝐿

𝐼𝑥
− (

𝐼𝑧 − 𝐼𝑦

𝐼𝑥
)𝑄𝑅

𝑀

𝐼𝑦
− (

𝐼𝑥 − 𝐼𝑧
𝐼𝑦

)𝑅𝑃

𝑁

𝐼𝑧
− (

𝐼𝑦 − 𝐼𝑥

𝐼𝑧
) 𝑃𝑄

(𝑐𝜓𝑐𝜃)𝑈 + (𝑐𝜓𝑠𝜃𝑠𝜙 − 𝑠𝜓𝑐𝜙)𝑉 + (𝑐𝜓𝑠𝜃𝑐𝜙 + 𝑠𝜓𝑠𝜙)𝑊

(𝑠𝜓𝑐𝜃)𝑈 + (𝑠𝜓𝑠𝜃𝑠𝜙 + 𝑐𝜓𝑐𝜙)𝑉 + (𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙)𝑊

−𝑠𝜃𝑈 + (𝑐𝜃𝑠𝜙)𝑉 + (𝑐𝜃𝑐𝜙)𝑊

𝑃 + (𝑡𝜃𝑠𝜙)𝑄 + (𝑡𝜃𝑐𝜙)𝑅

𝑐𝜙𝑄 − 𝑠𝜙𝑅

(
𝑠𝜙

𝑐𝜃
)𝑄 + (

𝑐𝜙

𝑐𝜃
)𝑅

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (5) 

The moments acting on the quadrotor 𝐿,𝑀 and 𝑁 and the total force 𝑇 are given by 

[

𝑇
𝐿
𝑀
𝑁

] = [

1 1 1 1
0 −ℓ 0 ℓ
ℓ 0 −ℓ 0
−𝑑 𝑑 −𝑑 𝑑

] [

𝑇1
𝑇2
𝑇3
𝑇4

] (6) 

with ℓ is the arm length 𝑑 is the rotor diameter. 

The general state space formulation can be written as follows 

�̇� = 𝑓(𝐱, 𝐔),  (7) 

with 

𝐔 = [𝑇1 𝑇2 𝑇3 𝑇4]
𝑇 .  

The objective is to compute the control input vector U(t) to force the system outputs to track their desired trajectories using ℒ1 

adaptive control. 
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Figure 1. Quadrotor Frames. 

2.2. ℒ1 Adaptive Control Design 

A common procedure in adaptive control design is to linearize the nonlinear model at a given equilibrium or operating point, in 

order to develop a linear controller based on the linearized system model, and to augment the linear controller with the adaptive 

controller. This allows for better robustness of the system. Actually, it permits for a less “burden” of the adaptive controller through the 

use of the prior knowledge of the system [40]. 

Linearizing about the hover equilibrium state, 𝐱𝑒𝑞 and control, 𝐮𝑒𝑞  gives 

𝛿�̇� = 𝐀𝛿𝐱 + 𝐁𝛿𝐮 (8) 

where 𝛿𝐱 and 𝛿𝐮 represents the small perturbations of the state and control about 𝐱𝑒𝑞 and 𝐮𝑒𝑞  respectively, where 

𝐀 = [

01×6 01×3 01×1 −𝑔 01×1
01×6 01×3 𝑔 01×1 01×1
04×6 04×3 04×1 04×1 04×1
𝕀6 06×3 06×1 06×1 06×1

]  

and 

𝐁 =

[
 
 
 
 
05×1 05×3

−
1

𝑚
01×3

03×1 03×3
03×1 𝐈−1 ]

 
 
 
 

[

1 1 1 1
0 −ℓ 0 ℓ
ℓ 0 −ℓ 0
−𝑑 𝑑 −𝑑 𝑑

] .  

Consequently, the non-linear model of the quadrotor in Equation (7) can be formulated as the following class of MIMO uncertain 

systems 

�̇�(𝑡)  = 𝐀𝑝𝐱(𝑡) + 𝐁𝑝𝐮𝑝(𝑡) + 𝐡(𝑡, 𝐱),  𝐱(0) = 𝐱0,

𝐲(𝑡)  = 𝐂𝐱(𝑡),
 (9) 

where 𝐀𝑝 = 𝐀 + Δ𝐀 ∈ ℝ
𝑛×𝑛  is an unknown matrix, 𝐀 ∈ ℝ𝑛×𝑛  is a known matrix, Δ𝐀 ∈ ℝ𝑛×𝑛  an unknown matrix of the system 

dynamics, 𝐁𝑝 = 𝐁(𝕀𝑚 + Δ𝐁) ∈ ℝ
𝑛×𝑚 is an unknown matrix, 𝐁 ∈ ℝ𝑛×𝑚 is a known matrix, Δ𝐁 ∈ ℝ𝑚×𝑚 is an unknown matrix of the 

control input uncertainties, 𝐂 ∈ ℝ𝑚×𝑛  is a known matrix, 𝐱(𝑡) ∈ ℝ𝑛  is the state vector which is assumed to be available through 

measurement, 𝐮𝑝(𝑡) ∈ ℝ
𝑚 is the control input vector and 𝐡(𝑡, 𝑥) ∈ ℝ𝑛 is a vector of unknown nonlinear functions. 

This formulation is a general case of MIMO systems, and it is quite understood that for a quadrotor 𝑛 = 12 and 𝑚 = 4. 

Now consider the control law 

𝐮𝑝(𝑡) = 𝐮(𝑡) + 𝐊𝑙𝐱(𝑡), (10) 

where 𝐊𝑙 ∈ ℝ
𝑚×𝑛  is a gain matrix that defines 𝐀𝑚 = 𝐀 + 𝐁𝐊𝑙 , where 𝐀𝑚 ∈ ℝ

𝑛×𝑛  is a Hurwitz matrix that defines the desired 

dynamics of the system. The resulting system to be controlled by the adaptive control is: 
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�̇�(𝑡) = 𝐀𝑚𝐱(𝑡) + 𝐁𝜔𝐮(𝑡) + �̃�(𝑡, 𝐱), (11) 

where 𝜔 = 𝕀𝑚 + Δ𝐁 and �̃�(𝑡, 𝐱) = Δ𝐀𝐱(𝑡) + (𝜔 − 𝕀𝑚)𝐊𝑙𝐱(𝑡) + 𝐡(𝑡, 𝐱). 

For control design, �̃�(𝑡, 𝐱) can be modelled as follows 

�̃�(𝑡, 𝐱) = 𝐁(𝜽𝐱(𝑡) + 𝜎𝑚(𝑡)) + 𝐁𝑢𝜎𝑢(𝑡). (12) 

Hence, the system in (11) can be parametrized as follows 

�̇�(𝑡) = 𝐀𝑚𝐱(𝑡) + 𝐁(𝜔𝐮(𝑡) + 𝜽𝐱(𝑡) + 𝜽𝑚(𝑡)) + 𝐁𝑢𝜎𝑢(𝑡),   (13) 

where 𝜃 ∈ ℝ𝑚×𝑛 is a matrix of constant unknown parameters representing model uncertainties, 𝜎𝑚(𝑡) ∈ ℝ
𝑚 is an unknown matched 

disturbance, 𝜎𝑢(𝑡) ∈ ℝ
𝑛  is an unknown unmatched disturbance, and 𝐁𝑢 ∈ ℝ

𝑛×(𝑛−𝑚)  is a constant matrix such that 𝐁𝑇𝐁𝑢 = 0 and 

[𝐁𝐁𝑢𝑚] has rank 𝑛. 

Assumption 1. The unknown model parameters are bounded, i.e., 𝜽 ∈ Θ, where Θ is a known compact convex set. The system input 

gain matrix 𝜔 is assumed to be an unknown (non-singular) strictly row-diagonally dominant matrix with sgn(𝜔𝑖𝑖) known. Furthermore, 

it is assumed that there exists a known compact convex set Ω such that 𝜔 ∈ Ω ⊂ ℝ𝑚×𝑚. The disturbances 𝜎𝑚(𝑡) and 𝜎𝑢(𝑡) are bounded, 

i.e., 𝜎𝑚 ∈ Δ𝑚 and 𝜎𝑢 ∈ Δ𝑢, where Δ𝑚 and Δ𝑢 are known compact sets. Finally 𝜎𝑚(𝑡) and 𝜎𝑢(𝑡) are assumed to be differentiable with 

bounded derivatives, i.e. there exist finite real 𝑑𝜎𝑚  and 𝑑𝜎𝑢  such that 

∥∥�̇�𝑚(𝑡)∥∥2 ≤ 𝝈𝑚,  ∥∥�̇�𝑢(𝑡)∥∥2 ≤ 𝝈𝑢 ∀𝑡 ≥ 0.  

We consider the architecture of the ℒ1 adaptive controller [26] which is composed of the state predictor, the adaptation law and 

the control law (Figure 2). 

 

Figure 2. Block diagram of the ℒ1 adaptive controller. 

The state predictor is defined by 

�̇̂�(𝑡) = 𝐀𝑚�̂�(𝑡) + 𝐁 (�̂�(𝑡)𝐮(𝑡) + �̂�(𝑡)𝐱(𝑡) + �̂�𝑚(𝑡)) + 𝐁𝑢�̂�𝐮(𝑡), (14) 

where �̂�(𝑡), �̂�𝑚(𝑡), �̂�𝑚(𝑡), and �̂�𝑢(𝑡) are the estimates of the unknown system parameters and �̂�(𝑡) is the estimate of the state vector 

𝐱(𝑡). 

The adaptation laws are given by 

�̇̂� = Γ Proj(�̂�, −(�̃�⊤𝐏𝐁)⊤𝐮⊤) ,

�̇̂�𝑚 = ΓProj(�̂�𝑚, −(�̃�
⊤𝐏𝐁)⊤𝑥⊤) ,

�̇̂�𝑚(𝑡) = Γ Proj(�̂�𝑚, −(�̃�
⊤𝐏𝐁)⊤) ,

�̇̂�𝑢(𝑡) = ΓProj(�̂�𝑢, −(�̃�
⊤𝐏𝐁𝐵𝑢

⊤),

 (15) 

where �̃� = �̂� − 𝐱 is the prediction errors, Γ > 0 are the adaptation gains, and 𝐏 is the solution of the algebraic Lyapunov equation 

𝐀𝑚
⊤ 𝐏 + 𝐏𝐀𝑚 = −𝐐,𝐐 > 0, while Proj(⋅,⋅) denotes the projection operator defined over the sets Θ, Ω, Δ𝑚 and Δ𝑢. 

To define the control law, we need to introduce some notations. Let 
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[
𝐇𝑥𝑚(𝑠)

𝐇𝑥𝑢𝑚(𝑠)
] = (𝑠𝕀 − 𝐀𝑚)

−1 [
𝐁𝑚
𝐁𝑢
]

[
𝐇𝑚(𝑠)

𝐇𝑢𝑚(𝑠)
] = 𝐂 [

𝐇𝑥𝑚(𝑠)

𝐇𝑥𝑢𝑚(𝑠)
]

  

The control law is given by 

𝐮(𝑠) = 𝐊𝐅(𝑠) (𝐊𝑔𝐫(𝑠) − �̂�(𝑠)), (16) 

where �̂�(𝑠) = �̂�1(𝑠) + �̂�2(𝑠), �̂�1(𝑠)  is the Laplace transformation of �̂�1(𝑡) = �̂�(𝑡)𝐮(𝑡) + �̂�𝑚(𝑡), �̂�2(𝑠) = 𝐻𝑚
−1(𝑠)𝐻𝑢𝑚(𝑠)�̂�𝑢(𝑠) , 

𝐊𝑔 = −(𝐂𝐀𝑚
−1𝐁)−1 is the pre-filter of the MIMO control law, 𝐅(𝑠) is a 𝑚 ×𝑚 strictly proper transfer function matrix and 𝐊 ∈ ℝ𝑚×𝑚. 

For analysis purposes, without loss of generality, 𝐅(𝑠) is chosen as 𝐅(𝑠) =
𝐃(𝑠)

𝑠
, where 𝐃(𝑠) is a proper stable transfer function. 

Hence, the control law can be written: 

𝐮(𝑠) = 𝐾
𝐃(𝑠)

𝑠
(𝐊𝑔𝑟(𝑠) − �̂�(𝑠)), (17) 

which leads, for all 𝜔 ∈ Ω, to a strictly proper stable 

𝐆(𝑠) ≜ 𝜔𝐊𝐃(𝑠)(𝑠𝕀𝑚 + 𝜔𝐊𝐃(𝑠))
−1
,  

with DC gain 𝐆(0) = 𝕀𝑚. 

The ℒ1 adaptive controller is subject to the ℒ1 norm condition [26] 

𝐿  = max
𝜽∈Θ

  ∥ 𝜽 ∥ℒ1= max𝑖
 (∑  𝑗   |𝜽𝑖𝑗|),

𝐆(𝑠)  = (𝑠𝕀 − 𝑣𝐴𝑚)
−1𝐁(𝕀 − 𝐆(𝑠)).

   (18) 

where ∥⋅∥ℒ1. denotes for the ℒ1 norm. 

Moreover, the choice of 𝐃(𝑠) also needs to ensure that 𝐂(𝑠)𝐇𝑚
−1(𝑠) is a proper stable transfer matrix. 

In the next section is presented the analysis of hard failures effect on quadrotor dynamics that leads to the inversion of the torque. 

3. Quadrotor Hard Failures Analysis 

If a fault or failure occurs on the system, the unknown parameters may go outside the predefined sets. As a consequence, the 

stability condition [26] may become not satisfied. More particularly, in case of a structural, hardware or software failure, the direction 

of the force vector of a propeller might be inverted. This is a very critical situation for pitch and roll angles, because the torques 𝑁 and 

𝑀 will act in the opposite direction to the desired commands 𝑁𝑐 and 𝑀𝑐, and the system will become unstable.  

3.1. Case Study: Quadrotor Modeling in Case of Structural Damage or Payload Shift 

Quadrotor UAVs are increasingly being used for package delivery. Because the content or the package itself might shift during 

the flight, centre of gravity (COG) variation occurs. As the centre of gravity affects the flight dynamics of the quadrotor, the performance 

of the UAV is degraded, if the centre of gravity does not coincide with the geometric centre of the quadrotor. The shift of the centre of 

gravity might occur also in case of structural damage. 

It is straightforward to show that in the case of shift of the centre the expression of the forces and moments acting on the UAV 

formulated in (6) will be reformulated as follows 

[

𝑇
𝐿
𝑀
𝑁

] = [

1 1 1 1
0 −ℓ + 𝛿𝑦 0 ℓ + 𝛿𝑦

ℓ − 𝛿𝑥 0 −ℓ − 𝛿𝑥 0
−𝑑 𝑑 −𝑑 𝑑

] [

𝑇1
𝑇2
𝑇3
𝑇4

] ,  (19) 

where 𝛿𝑥 and 𝛿𝑦 are the distances of shift of the COG that are assumed to be unknown. 

It is clear that the sign of the diagonal of the control input depends on the amplitude of the shift of the centre of gravity and on the 

sign of −𝑙 − 𝛿𝑥 and −𝑙 + 𝛿𝑥, consequently. If the centre of gravity shift goes beyond limits, the sign of the diagonals of the input matrix 

𝐵 can be reverted and leads to the instability of the control system. 

3.2. Case Study: Rotor Aerodynamic Modelling in Case of Blades Damage 

The thrust 𝑇 produced by the rotation of the blades can be expressed [41,42] by 
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T = 𝐶𝑇𝜌𝐴(𝜁𝑅)
2,   (20) 

where 𝜌 is the density of air, 𝐴 is the area captured by rotor, 𝑅 is the rotor radius, 𝜁 is the angular speed of the rotor and 𝐶𝑇 the thrust 

coefficient. 

When a rotorcraft rolls and pitches, the rotors experience a vertical velocity, leading to a change in the inflow angle. In this case the 

thrust coefficient 𝐶T can be related to the vertical velocity 𝑉𝑐 as [43]  

𝐶T

𝜎
=

𝑎(𝛼)

4
[𝜃tip −

𝑣𝑖+𝑉𝑐

𝜁𝑅
],  (21) 

where 𝑎 is the airfoil polar lift slope, 𝜃tip is the geometric blade angle at the tip of the rotor, 𝑣𝑖 is the induced velocity through the rotor, 

and 𝜎 is the solidity of the disc-the ratio of the surface area of the blades and the rotor disc area. The added lift due to increased flow 

velocity magnitude at the blade is small relative to the effect of changing inflow angle, and is ignored [43]. 

It is possible that blade damage or icing can induce a change in the sign of the thrust coefficient. This could be a consequence of: 

• A reduction of the geometric blade angle 𝜃tip. 

• An augmentation of the induced velocity 𝑣𝑖 and/or the vertical velocity 𝑉𝑐. 

• A change of the direction of the polar lift slope 𝑎(𝛼), that is a highly nonlinear for some airfoils [43]. 

Remark 1. Based on the previous analysis, it is necessary to maintain system stability and a minimum of good performance, this is 

done through the design of a set of degraded models which become effective when large uncertainties appear on the plant. 

4. Multiple Model ℒ1 Adaptive Control of MIMO Systems 

In this section, the multiple model ℒ1 adaptive controller first presented in [39] is extended to MIMO systems. 

Considering probable faults scenario, a set of plant parameterizations, based on multiple models, is arranged, and the objective is 

that the satisfactory controller is selected automatically to deal with every situation. This means that the model which is the best match 

of the plant is selected. 

The desired performance of each model is made through the design of the pair (𝐀𝑚(𝑖), 𝐁𝑖), for 𝑖 = 0…𝑀𝑑, where 𝑀𝑑 is the number 

of degraded models. 

The system in (9) can consequently be parameterized as follows 

�̇�(𝑡)  = 𝐀𝑚(𝑖)𝐱(𝑡) + 𝐁𝑖 (𝜔𝑖𝐮(𝑡) + 𝜽𝑖𝐱(𝑡) + 𝜎𝑚(𝑖)(𝑡)) + 𝐁𝑢(𝑖)𝜎𝑢(𝑖)(𝑡),

𝐲(𝑡)  = 𝐂𝐱(𝑡),
 (22) 

where 𝐀𝑚(𝑖) ∈ ℝ
𝑛×𝑛 are known Hurwitz matrices that define the desired dynamics of the system 𝐁𝑖 ∈ ℝ

𝑛×𝑚 are the desired input 

matrices, 𝜔𝑖 ∈ ℝ
𝑚×𝑚  are unknown constant matrices representing the system input gain, 𝐁𝑢(𝑖) ∈ ℝ

𝑛×𝑛−𝑚  are the unmatched 

disturbances matrices, 𝜽𝑖 ∈ ℝ
𝑚×𝑛 are matrices of unknown parameters, 𝝈𝑚(𝑖)(𝑡) ∈ ℝ

𝑚 are unknown matched disturbances, 𝜎𝑢(𝑖)(𝑡) ∈

ℝ𝑛−𝑚 are unknown unmatched disturbances. 𝐂 ∈ ℝ𝑚×𝑛 is the output matrix and 𝐲(𝑡) ∈ ℝ𝑚 is the output vector. 

Assumption 2. The system input gain matrices 𝜔𝑖 are assumed to be unknown (non-singular) strictly row-diagonally dominant matrices 

with known signs of diagonals. 

4.1. Controller Design 

The multiple model ℒ1 adaptive controller, as shown in Figure 3, is composed of a set of state predictors, a set of adaptation laws, 

a set of control laws and a control input selector (switching system). 

The state predictors are defined by 

�̇̂�𝑖(𝑡) = 𝐀𝑚(𝑖)�̂�𝑖(𝑡) + 𝐁𝑖 (�̂�𝑖(𝑡)𝐮(𝑡) + �̂�𝑖𝐱(𝑡) + �̂�𝑚(𝑖)(𝑡)) + 𝐁𝑢(𝑖)�̂�𝑢(𝑖)(𝑡), (23) 

where �̂�𝑖(𝑡) are the predicted states and, �̂�𝑖(𝑡), �̂�𝑖(𝑡), �̂�𝑚(𝑖)(𝑡), �̂�𝑚(𝑖)(𝑡) , and �̂�𝑢(𝑖)(𝑡))  are the estimates of the unknown system 

parameters and external disturbances. The initial state of the state predictor is equal to the plant state at switching time 𝑡𝑘 : 

�̂�(𝑡𝑘) = 𝐱(𝑡𝑘).  

The adaptation laws are given by 
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�̇̂�𝑖 = ΓProj(�̂�𝑖 , −(�̃�𝑖
⊤𝐏𝐁𝐢)

⊤𝐮⊤) ,

�̇̂�𝑚(𝑖) = ΓProj(�̂�𝑚(𝑖), −(�̃�𝑖
⊤𝐏𝐁𝐢)

⊤𝐱⊤) ,

�̇̂�𝑚(𝑖)(𝑡) = Γ Proj(�̂�𝑚(𝑖), −(�̃�𝑖
⊤𝐏𝐁)𝑖)

⊤
) ,

�̇̂�𝑢(𝑖)(𝑡) = Γ Proj (�̂�𝐮(𝑖), −(�̃�𝑖
⊤𝐏𝐁𝐁𝑢(𝑖))

⊤
) ,

  (24) 

where �̃�𝑖 = �̂�𝑖 − 𝐱 are the prediction errors, Γ𝑖 > 0 are the adaptation gains and 𝐏 is the solution of the algebraic Lyapunov equation 

𝐀𝑚(𝑖)
⊤ 𝐏 + 𝐏𝐀𝑚(𝑖) = −𝐐,𝐐 > 0.  

To define the control law, let: 

[
𝐇𝑥𝑚(𝑖)(𝑠)

𝐇𝑥𝑢𝑚(𝑖)(𝑠)
] = (𝑠𝕀 − 𝐀𝑚(𝑖))

−1
[
𝐁(𝑖)
𝐁𝑢(𝑖)

]

[
𝐇𝑚(𝑖)(𝑠)

𝐇𝑢𝑚(𝑖)(𝑠)
] = 𝐂 [

𝐇𝑥𝑚(𝑖)(𝑠)

𝐇𝑥𝑢𝑚(𝑖)(𝑠)
]

  

The control laws are given by 

𝐮𝑖(𝑠) = 𝐊𝑖𝐅𝑖(𝑠) (𝐊𝑔(𝑖)𝐫(𝑠) − �̂�𝑖(𝑠)),   (25) 

where �̂�𝑖(𝑠) = �̂�1(𝑖)(𝑠) + �̂�2(𝑖)(𝑠), �̂�1(𝑖)(𝑠)  are the Laplace transformations of �̂�1(𝑖)(𝑡) = �̂�(𝑡)𝐮(𝑡) + �̂�𝑚(𝑖)(𝑡), �̂�2(𝑖)(𝑠) = 

𝐇𝑚(𝑖)
−1 (𝑠)𝐇𝑢𝑚(𝑖)(𝑠)�̂�𝑢(𝑖)(𝑠), 𝐊𝑔(𝑖) = −(𝐂𝐀𝑚(𝑖)

−1 𝐁𝑖)
−1

 are the pre-filters of the MIMO control laws, 𝐅𝑖(𝑠)  are 𝑚 ×𝑚  strictly proper 

transfer function matrices and 𝐊 ∈ ℝ𝑚×𝑚. 

Similarly to ℒ1  adaptive control with one model, 𝐅𝑖(𝑠)  are chosen as 𝐅𝑖(𝑠) =
𝐃𝑖(𝑠)

𝑠
, where 𝐃𝑖(𝑠)  are proper stable transfer 

functions. Hence, the control laws can be written as 

𝐮𝑖(𝑠) = 𝐊𝑖
𝐃𝑖(𝑠)

𝑠
(𝐊𝑔(𝑖)𝑟(𝑠) − �̂�𝑖(𝑠)),  (26) 

which leads, for all 𝜔 ∈ Ω, to a strictly proper stable 

𝐆𝑖(𝑠) ≜ 𝜔𝑖𝐊𝑖𝐃𝑖(𝑠)(𝑠𝕀𝑚 +𝝎𝑖𝐊𝑖𝐃𝑖(𝑠))
−1
,  

with DC gain 𝐺𝑖(0) = 𝕀𝑚. 

The switching logic is defined by 

min
𝑖=0..𝑀𝑑

  {𝐽𝑖 = 𝑐1∥∥�̃�𝑖∥∥
2 + 𝑐2 ∫  

𝑡

0
  𝑒−𝑐3(𝑡−𝜏)∥∥�̃�𝑖(𝜏)∥∥

2
𝑑𝜏},  (27) 

where 𝑐1, 𝑐2 and 𝑐3 are arbitrary positive reals. The model that minimizes the criterion becomes the selected model. 

 

Figure 3. Block diagram of the multiple model ℒ1 adaptive controller. 
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4.2. Controller Analysis 

In this section, the performance of the ℒ1 adaptive controller is analysed. More specifically it is shown that: 

• The reference models resulting from perfect knowledge of the uncertainties and a corresponding non-adaptive controller are 

stable, subject to some conditions involving the filters 𝐅𝑖(𝑠). 

• The prediction errors, i.e., the errors between the states of the plant and those of the state predictors, are bounded.  

• The differences between the states/input of the system and those of the reference systems are proportional to the prediction error 

4.2.1. Reference Models Analysis 

For a switching system, it is not straightforward to compute the ℒ1 norm condition in Equation (18). Actually, for LTI systems, 

the ℒ1 norm is readily computed from the impulse response. However, for a switched system, the impulse response is time dependent 

(switching signal-dependent), and computing the ℒ1 norm is not as straightforward as in the LTI case. In consequence, the approach 

proposed in [44] is extended here to the case of systems with unmatched disturbances. 

For each parametrization, the reference model with the nominal parameters of the system is defined by 

�̇�𝑟(𝑡) = 𝐀(𝑖)𝐱𝑟(𝑡) + 𝐵𝑖 (𝜔𝑖𝐮𝑟(𝑡) + 𝜎𝑚(𝑖)(𝑡)) + 𝜎𝑢(𝑖)(𝑡). (28) 

The reference (nominal) control law is given by 

𝐮𝑟(𝑖)(𝑠) = 𝐾𝑖
𝐷𝑖(𝑠)

𝑠
(𝐊𝑔(𝑖)𝐫𝑖(𝑠) − 𝒗(𝑖)(𝑠)),   (29) 

where 𝒗(𝑖)(𝑠) = 𝒗1(𝑖)(𝑠) + 𝒗2(𝑖)(𝑠)𝝈𝑢(𝑖)(𝑠), 𝒗1(𝑖)(𝑠)  are the Laplace transformations of 𝒗1(𝑖)(𝑠) = 𝜔𝑖(𝑡)𝐮𝑖(𝑡) + 𝝈𝑚(𝑖)(𝑡) , 𝒗2 =

𝐇𝑚(𝑖)
−1 (𝑠)𝐇0(𝑖)(𝑠)𝝈𝑢(𝑖)(𝑠), 𝐊𝑔(𝑖) = −(𝐂𝑖𝐀(𝑖)

−1𝐁𝑖)
−1

 are the pre-filters of the MIMO control laws, 𝐃𝑖(𝑠)  are 𝑚 ×𝑚  strictly proper 

transfer matrices and 𝐊𝑖 ∈ ℝ
𝑚×𝑚. 

Letting ( 𝐀𝑓(𝑖), 𝐁𝑓(𝑖), 𝐂𝑓(𝑖), 𝐃𝑓(𝑖)) be a minimal realization of 𝐃𝑖(𝑠) with 𝑛𝑓(𝑖) states, the reference system dynamics can be written 

in state-space form as follows 

[

�̇�𝑟(𝑡)

�̇�𝑓𝑖(𝑡)

�̇�𝐼𝑖(𝑡)
]

⏟    
�̇̇�

= [

𝐀𝑚(𝑖) + 𝐁𝑖𝜽𝑖
⊤ 0 −𝐁𝑖𝜔𝑖

𝐁𝑓(𝑖)𝜽𝑖
⊤ 𝐀𝑓(𝑖) 𝐁𝑓(𝑖)𝝎𝑖

𝐃𝑓(𝑖)𝜽𝑖
⊤ 𝐂𝑓(𝑖) 𝐃𝑓(𝑖)𝜔𝑖

]

⏟                    
𝐴‾𝑖

[

𝐱𝑟(𝑡)

𝐱𝑓𝑖(𝑡)

𝐱𝐼𝑖(𝑡)
]

⏟    
�̅�

− [

𝐁𝑖
𝐁𝑓(𝑖)
𝐃𝑓(𝑖)

]

⏟  
�̅�𝑖

𝒗(𝑖)(𝑡) + [

0
𝐁𝑓(𝑖)
𝐃𝑓(𝑖)

]

⏟  
�̅�𝑖

𝐊𝑔(𝑖)𝐫(𝑡),  
(30) 

where 𝐱𝑓𝑖 , 𝐱𝐼𝑖 are the states of the filters and the integrators, respectively, and �̅�(0) = [𝐱0
⊤, 0,0]⊤. The reference control law can be 

written as follows 

𝐮𝑟(𝑖)(𝑡) = [0 0 −𝕀]⏟        
𝐶‾

[

𝐱𝑟(𝑡)

𝐱𝑓𝑖(𝑡)

𝐱𝐼𝑖(𝑡)
].   (31) 

The system in (30) and (31) is equivalent to: 

�̇̅� = �̅�𝑖�̅� + �̅�𝑖𝒗(𝑖) + �̅�𝑖𝐊𝑔(𝑖)𝐫(𝑡),

𝐮𝑟(𝑖) = �̅��̅�.
  (32) 

Remark 2. In this work it is assumed that the switching is arbitrary, i.e., not dwell time or average dwell time. The switching signal has 

a dwell time 𝜏 > 0, if the switching times satisfy 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝜏, ∀𝑘 > 0 [45]. 

Lemma 1. Give an arbitrary matrix 𝐐 = 𝐐⊤ > 0, if there exists a constant symmetric matrix 𝐏 > 0 verifying 

�̅�𝑖
⊤𝐏 + 𝐏 �̅�𝑖 ≤ −𝐐, ∀𝜽𝑖 ∈ Θ𝑖 and ∀𝜔𝑖 ∈ Ω𝑖 ,  

then the Lyapunov function 𝑉 = �̅�⊤�̅��̅� guarantees the stability of the switching reference systems in (30) and (31). 

This fact is straightforward from the converse Lyapunov theorem for LTI systems. 

4.2.2. Transient Performance and Steady-State Performance 

In the following Lemma, it is stated that the prediction errors �̃�𝑖(𝑡) and the estimation errors of the unknown parameters are 

bounded for 𝑖 = 0…𝑀𝑑. 
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Lemma 2. The prediction error of each state predictor, �̃�𝑖(𝑡) is bounded with respect to initial conditions and its bound is given by 

∥∥�̃�𝑖∥∥ℒ∞
≤ 𝜌𝑖 ,    (33) 

where 

𝜌𝑖 = √
𝜽𝑚𝑖

(𝜆min(𝐏𝑖)Γ)
  

and 

𝜽𝑚𝑖 ≜ 4
𝜆max(𝐏𝑖)

𝜆min(𝐐𝑖)
(𝑑𝜎𝑚 max

𝜎𝑚(𝑖)∈Δ𝑚
 ∥∥𝝈𝑚(𝑖)∥∥2)

 +4
𝜆max(𝐏𝑖)

𝜆min(𝐐𝑖)
(𝑑𝜎𝑢 max

𝜎𝑢(𝑖)∈Δ𝑢
 ∥∥𝝈𝑢(𝑖)∥∥2)

 +4 (max
𝜽𝑖∈Θ𝑖

  tr(𝜽𝑖
⊤𝜽𝑖) + max

𝜔𝑖∈Ω𝑖
  tr(𝜔𝑖

⊤𝝎𝑖))

 +4 ( max
𝝈𝑚(𝑖)∈Δ𝑚

(𝝈𝑚(𝑖)𝝈𝑚(𝑖)) + max
𝝈𝑢(𝑖)∈Δ𝑢

 (𝝈𝑢(𝑖)𝝈𝑢(𝑖)))

  

Proof 

Let �̃�𝑖 = �̂�𝑖 − 𝜽𝑖 , �̃�𝑚(𝑖) = �̂�𝑚(𝑖) − 𝜎𝑚(𝑖), �̃�𝑢(𝑖) = �̂�𝑢(𝑖) − 𝜎𝑢(𝑖), �̃�𝑖 = �̂�𝑖 − 𝜔𝑖, the following error dynamics can be derived from 

(13) and (22) 

�̃�𝑖 = 𝐀𝑚(𝑖)�̃�𝑖 + 𝐁𝑖(�̃�𝑖𝐮 + �̃�𝑖𝐱 + �̃�𝑚(𝑖)) + �̃�𝑢(𝑖),  (34) 

with �̃�𝑖(0) = 0 

Consider the following Lyapunov functions 

𝑉𝑖 = �̃�𝑖
⊤𝐏𝑖�̃�𝑖 + Γ

−1 tr(�̃�𝑖⊤�̃�𝑖) + Γ
−1 tr(�̃�𝑖⊤�̃�𝑖) + Γ

−1(�̃�𝑚(𝑖)
⊤ �̃�𝑚(𝑖)) + Γ

−1(�̃�𝑢(𝑖)
⊤ �̃�𝑢(𝑖)) (35) 

Using the adaptation laws from (24), the derivatives of the Lyapunov functions are bounded as follows 

�̇�𝑖 ≤ −�̃�𝑖
⊤𝐐𝑖 �̃�𝑖 + 2Γ

−1 tr(�̃�𝑚(𝑖)
⊤ �̃�𝑚(𝑖) + �̃�𝑢(𝑖)

⊤ �̃�𝑢(𝑖)). (36) 

The projection algorithm ensures that �̂�𝑖 ∈ Θ, Ω̂𝑖 ∈ 𝜔, �̂�𝑚(𝑖) ∈ Δ𝑚 and �̂�𝑢(𝑖) ∈ Δ𝑢. 

Consequently, it can be written 

 max
𝑡≥0

 (tr(�̃�𝑖
⊤�̃�𝑖) + tr(�̃�𝑖

⊤�̃�𝑖) + �̃�𝑚(𝑖)
⊤ �̃�𝑚(𝑖) + �̃�𝑢(𝑖)

⊤ �̃�𝑢(𝑖)) ≤

4 (max
𝜽𝑖∈Θ

  tr(𝜽𝑖
⊤𝜽𝑖) + max

𝜔𝑖∈Ω
  tr(𝝎𝑖

⊤𝝎𝑖)) + 4( max
𝝈𝑚(𝑖)∈Δ𝑚

 (𝝈𝑚(𝑖)
⊤ 𝝈𝑚(𝑖)) + max

𝜎𝑢(𝑖)∈Δ𝑢
 (𝝈𝑢(𝑖)

⊤ 𝝈𝑢(𝑖)))
 (37) 

If 𝑉𝑖 ≥ 𝜽𝑚(𝑖)Γ at some time 𝑡, then it follows that 

�̃�𝑖
⊤𝐐𝑖�̃�𝑖 ≥

𝜆min(𝐐𝑖)�̃�𝑖
⊤𝑃�̃�𝑖

𝜆max(𝐐𝑖)
≥ 4Γ−1 (𝑑𝜎𝑚(𝑖) max

𝜎𝑚(𝑖)∈Δ𝑚
 ∥∥𝜎𝑚(𝑖)∥∥2 + 𝑑𝜎𝑢(𝑖) max𝜎𝑢(𝑖)∈Δ𝑢

 ∥∥𝜎𝑢(𝑖)∥∥2). (38) 

Using the bounds in assumption 1, it can be written 

�̃�𝑚(𝑖)
⊤ �̇�𝑚(𝑖) + �̃�𝑚(𝑖)

⊤ �̇�𝑚(𝑖) ≤ 𝑑𝜎𝑚(𝑖) max
𝜎𝑚(𝑖)∈Δ𝑚

 ∥∥𝝈𝑚(𝑖)∥∥2 + 𝑑𝜎𝑢(𝑖) max𝜎𝑢(𝑖)∈Δ𝑢
 ∥∥𝜎𝑢(𝑖)∥∥2.  (39) 

Consequently, if 𝑉𝑖 ≥
𝜃𝑚(𝑖)

Γ𝑖
, then it follows that 

�̇�𝑖 ≤ 0.   (40) 

Given that �̃�𝑖(0) = 0, we have 
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𝑉𝑖(0) ≤ 4
max
𝜽𝑖∈Θ

  tr(𝜽𝑖
⊤𝜽𝑖)+max𝜔𝑖∈Ω

  tr(𝝎𝑖
⊤𝝎𝑖)

Γ

 +4
max

𝜎𝑚(𝑖)∈Δ𝑚
 (𝜎𝑚(𝑖)
⊤ 𝜎𝑚(𝑖))+ max

𝜎𝑢(𝑖)∈Δ𝑢
 (𝜎𝑢(𝑖)
⊤ 𝜎𝑢(𝑖))

Γ

 <
𝜽𝑚(𝑖)

Γ
.

   (41) 

Recalling that 

𝜆min(𝐏𝑖)∥∥�̃�𝑖∥∥
2 ≤ �̃�𝐢

⊤𝐏𝑖�̅�𝑖 ≤ 𝑉𝑖 ,   (42) 

which implies that 

∥∥�̅�𝑖∥∥2
2 ≤

𝜽𝑚(𝑖)

𝜆min(𝐏𝑖)Γ
,   (43) 

and consequently 

∥∥�̅�𝑖∥∥2 ≤ 𝜌𝑖 .   (44) 

The proof is complete. 

The following theorem shows that the states of the adaptive system follow those of the reference system with a bound proportional 

to ∥ �̃� ∥ℒ∞ . The approach is similar to [44], for the case of arbitrary switching. 

Theorem. If the reference system is exponentially stable then 

∥∥𝐱𝑟 − 𝐱∥∥ℒ∞
≤ 𝜅2 ∥ �̃� ∥ℒ∞ ,  ∥∥𝐮𝑟 − 𝐮∥∥ℒ∞

≤ 𝜅3 ∥ �̃� ∥ℒ∞  

where 𝜅2 and 𝜅3 are positive constants defined in (57) and (60), respectively. 

Proof. The control laws in (26) can be written as 

𝐮(𝑠) = −
𝐷0(𝑠)

𝑠
(𝜔𝑖𝐮(𝑠) + 𝑣𝑖(𝑠) + �̃�𝑖(𝑠) − 𝐊𝑔𝑖𝐫(𝑠)), (45) 

where �̃�(𝑖)(𝑠) = �̃�1(𝑖)(𝑠) + �̃�2(𝑖)(𝑠), �̃�1(𝑖)(𝑠)  are the Laplace transformations of �̃�1(𝑖) = �̃�𝑖
⊤𝐱(𝑡) + �̃�𝑖(𝑡)𝐮(𝑡)  and �̃�2(𝑖)(𝑠) =

�̃�𝐮(𝑖)(𝑠) + 𝐇𝑚(𝑖)
−1 (𝑠)𝐇0(𝑖)(𝑠)�̃�𝑢(𝑖)(𝑠). Consequently, the closed-loop systems (22) and (45) can be written as follows 

[

�̇�
�̇�𝑓1
�̇�𝐼1

] = [

𝐀𝑚(𝑖) + 𝐁𝑖𝜽𝑖
⊤ 0 −𝐁𝑖𝜔𝑖

𝐁𝑓𝜽𝑖
⊤ 𝐀𝑓 𝐁𝑓𝜔𝑖

𝐃𝑓𝜽𝑖
⊤ 𝐂𝑓 𝐃𝑓𝜔𝑖

] [

𝐱
𝐱𝑓1
𝐱𝐼1

] + [

𝐁𝑖
𝐁𝑓
𝐃𝑓

] 𝒗2(𝑖) + [

0
𝐁𝑓
𝐃𝑓

] �̃�𝑖 − [

0
𝐁𝑓𝐊𝑔𝑖
𝐃𝑓𝐊𝑔𝑖

] 𝐫  (46) 

The error between the state of the reference system and the actual plant, 𝐞 = 𝐱𝑟 − 𝐱, can be expressed as 

[

�̇�
�̇�𝑓1
�̇�𝐼1

] = [

𝐀(𝑖) + 𝐁𝑖𝜽𝑖
⊤ 0 −𝐁𝑖𝜔𝑖

𝐁𝑓𝜽𝑖
⊤ 𝐀𝑓 𝐁𝑓𝜔𝑖

𝐃𝑓𝜽𝑖
⊤ 𝐂𝑓 𝐃𝑓𝝎𝑖

] [

𝐞
𝐱𝑓1
𝐱𝐼1

] + [

𝐁𝑖
𝐁𝑓
𝐃𝑓

] �̃�𝑖   (47) 

The control error can also be formulated as follows 

𝐞𝑢 = 𝐮𝑟 − 𝐮 = [0 0 −𝕀] [

𝐞
𝐱𝑓1
𝐱𝐼1

]   (48) 

The prediction error dynamics in (34) can be written as 

�̃�𝑖 = 𝐁𝑖
†(�̇̃� − 𝐀𝑚(𝑖)�̃�).   (49) 

Passing 𝐁𝑖
†�̇̃� through the filter (𝑠𝕀 + 𝐷0(𝑠)𝜔𝑖)

−1𝐷0(𝑠), we can write 

[
�̇�𝑓2
�̇�𝐼2
] = [

𝐀𝑓 𝐁𝑓𝜔𝑖
𝐂𝑓 𝐃𝑓𝜔𝑖

] [
𝐱𝑓2
𝐱𝐼2
] + [

𝐁𝑓
𝐃𝑓
] 𝐁𝑖

†�̃�   (50) 

Applying this to the error dynamics in (47) we have 
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[
 
 
 
 
 
�̇�
�̇�𝑓1
�̇�𝐼1
�̇�𝑓2
�̇�𝐼2]
 
 
 
 
 

=

[
 
 
 
 
 
𝐀𝑚(𝑖) + 𝐁𝑖𝜽𝑖

⊤ 0 −𝐁𝑖𝜔𝑖 −𝐁𝑖𝐂𝑓 −𝐁𝑖𝐃𝑓𝜔𝑖

𝐁𝑓𝜽𝑖
⊤ 𝐀𝑓 𝐁𝑓𝜔𝑖 0 0

𝐃𝑓𝜽𝑖
⊤ 𝐂𝑓 𝐃𝑓𝜔𝑖 0 0

0 0 0 𝐀𝑓 𝐁𝑓𝜔𝑖
0 0 0 𝐂𝑓 𝐃𝑓𝝎𝑖 ]

 
 
 
 
 

[
 
 
 
 
𝐞
𝐱𝑓1
𝐱𝐼1
𝐱𝑓2
𝐱𝐼2]
 
 
 
 

+

[
 
 
 
 
 
 −𝐃𝑓𝐁𝑖

†

−𝐁𝑓𝐁𝑖
†𝐀𝑚(𝑖)

−𝐃𝑓𝐁𝑖
†𝐀𝑚(𝑖)

−𝐁𝑓𝐁𝑖
†

−𝐃𝑓𝐁𝑖
†

]
 
 
 
 
 
 

�̃�,    (51) 

and 

𝐞𝑢 = [0 0 −𝕀 −𝐂𝑓 −𝐃𝑓𝜔𝑖]

[
 
 
 
 
𝐞
𝐱𝑓1
𝐱𝐼1
𝐱𝑓2
𝐱𝐼2 ]
 
 
 
 

+ [−𝐃𝑓𝐁𝑖
†]�̃�.   (52) 

Letting 

�̅�𝑖 = [
−𝐁𝑖𝐂𝑓 −𝐁𝑖𝐃𝑓𝜔𝑖
0 0
0 0

] ,  𝐉̅𝑖 = [

−𝐃𝑓𝐁𝑖
†

−𝐁𝑓𝐁𝑖
†𝐀𝑚(𝑖)

−𝐃𝑓𝐁𝑖
†𝐀𝑚(𝑖)

] ,

𝐆𝑖 = [
−𝐁𝑓𝐁𝑖

†𝐀(𝑖)

−𝐃𝑓𝐁𝑖
†𝐀(𝑖)

] ,  �̅�𝑖 = [0 𝐂𝑓 𝐃𝑓𝜔𝑖],

  

it follows from (51) and (52) that 

[
�̇̅�
�̇�𝑓2
] = [

�̅�𝑖 �̅�𝑖
0 �̅�𝑖

] [
�̅�
�̅�𝑓2
] + [

𝐉̅𝑖
𝐆𝑖
] �̃�,   (53) 

and 

𝐞𝑢 = [�̅� �̅�𝑖] [
�̅�
�̅�𝑓2
] + [−𝐃𝑓𝐁𝑖

†]�̃�, (54) 

where �̅� = [𝐞⊤, 𝐱𝑓1
⊤ , 𝐱𝐼1

⊤ ]
⊤

 and �̅�𝑓2 = [𝐱𝑓2
⊤ , 𝐱𝐼2

⊤ ]
⊤

. 

Note that the reference system is stable and the filter represented by �̅�𝑖  is a subsystem of the reference system when 𝜽 = 0. 

Therefore, from Lemma 1, there exists positive definite matrices 𝐐𝑖(𝜔𝑖) > 0 such that for all 𝜔𝑖 ∈ Ω, 

�̅�𝑖
⊤�̅�𝑖 + �̅�𝑖�̅�𝑖 ≤ −𝕀.   (55) 

Let 𝑉‾𝑖(𝑡) = �̅�𝑓2
⊤ �̅�𝑖�̅�𝑓2 , where 𝑉𝑖(0) = 0. Differentiating along the system trajectories it follows that 

�̇�𝑖  = �̅�𝑓2
⊤ (�̅�𝑖

⊤�̅�𝑖 + �̅�𝑖�̅�𝑖)�̅�𝑓2 + 2�̅�𝑓2
⊤ �̅�𝑖𝐆𝑖�̃�

 ≤ −∥∥�̅�𝑓2∥∥
2
+ 2∥∥�̅�𝑓2∥∥𝛽𝐹 ∥ �̃� ∥ℒ∞

 ≤ −∥∥�̅�𝑓2∥∥
2
+ 𝛽𝐹

2 ∥ �̃� ∥ℒ∞
2

  (56) 

where the last line follows from square completion and 𝛽𝐹 = √𝑛max𝑖∈𝐼  ∥∥�̅�𝑖𝐆𝑖∥∥. 
By integrating it is straightforward to show that the following bound holds for �̅�𝑓2  

∥∥�̅�𝑓2∥∥ℒ∞
≤ 𝜅1,  (57) 

where 𝜅1 = √𝑛max𝑖∈𝐼  ∥∥�̅�𝑖𝐆𝑖∥∥𝛿 and 𝛿 is the upper bound of �̃�𝑖 defined in Lemma 2. 

We now define the Lyapunov functions 𝑊‾ 𝑖 = �̅�
⊤�̅�𝑖�̅�. Differentiating along the system trajectories it follows that 

�̇�𝑖  = �̅�⊤(�̅�𝑖
⊤�̅�𝑖 + �̅�𝑖�̅�𝑖)�̅� + 2�̅�

⊤�̅�𝑖�̅�𝑖�̅�𝑓2 + 2�̅�
⊤�̅�𝑖𝐉̅𝑖�̃�

 ≤ −∥ �̅� ∥2+ 2 ∥ �̅� ∥ 𝛽𝑒‾ ∥ �̃� ∥ℒ∞
 ≤ −∥ �̅� ∥2+ 𝛽𝑒‾

2 ∥ �̃� ∥ℒ∞
2 ,

 (58) 

where 𝛽𝑒 = (𝜅1max𝑖∈𝐼  ∥∥�̅�𝑖�̅�𝑖∥∥ + √𝑛max𝑖∈𝐼  ∥∥�̅�𝑖𝐉̅𝑖∥∥). 

Therefore, the following bound holds 
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∥ �̅� ∥ℒ∞≤ 𝜅2,   (59) 

where 𝜅2 = (𝜅1max𝑖∈𝐼  ∥∥�̅�𝑖�̅�𝑖∥∥ + √𝑛max𝑖∈𝐼  ∥∥�̅�𝑖𝐉̅𝑖∥∥)𝛿. 

Given the definition of 𝐞𝑢 from (54), it follows that 

∥∥𝐞𝑢∥∥ℒ∞
≤  ≤∥ �̅� ∥∥ �̅� ∥ℒ∞+ ∥∥�̅�𝑖∥∥∥∥�̅�𝑓2∥∥ℒ∞

+ ∥∥𝐃𝑓𝐁𝑖
†
∥∥ ∥ �̃� ∥ℒ∞ ,

 ≤ 𝜅3,
  

where 𝜅3 =∥ �̅� ∥ 𝜅2 + (max𝑖∈𝐼  ∥∥�̅�𝑖∥∥ + max𝑖∈𝐼  ∥∥𝐃𝑓𝐁𝑖
†
∥∥)𝛿. This completes the proof. 

5. Simulation Results for Quadrotor Control in Case of Inversion of the Torque Direction 

In this section, the simulation results for the ℒ1 adaptive controller with a single model and multiple models are presented and 

compared. 

The vehicle that is modelled for use in this work is the Draganfly X-pro quadrotor. The quadrotor arm length is 0.50 m. Each rotor 

has two blades. The radius of the rotor is 0.258 m, and the mean chord of the blade is 0.032 m. A 14.8 V lithium-ion polymer battery is 

used for supplying the electric power, this being the maximum voltage that can be supplied to a motor [35]. The mass and inertia 

parameters are [46,47]: 

𝑚 = 2.356 kg,  𝐼𝑥 = 0.1676 kg m2

𝐼𝑦 = 0.1676 kg m2,  𝐼𝑧 = 0.29743 kg m2  

The rotors are driven by voltages to four electronic motors, the thrust-voltage relationship can be expressed as follows 

𝑓𝑖 = 𝑘𝑓𝑣𝑖
2,  𝑖 = 1,2,3,4  

where 𝑓𝑖 is the individual thrust from 𝑖 th rotor, 𝑣𝑖 is the individual voltage input and 𝑘𝑓 =
0.11 N

V2
. The individual torque of each rotor is 

𝜏𝑖 = 𝑘𝜏𝑣𝑖
2  

where 𝜏𝑖 is the individual torque from 𝑖 th rotor and 𝑘𝜏 =
0.052Nm

V2
. The force and moments are not linear with voltage, but linear with 

squared voltage, therefore the squared voltages are used as the final full system model input vector, 𝑢 = [𝑣1
2, 𝑣2

2, 𝑣3
2, 𝑣4

2]𝑇 

The system of Equation (9) with its nominal desired dynamics can be parameterized to become similar to the class of MIMO 

systems in (22) defined by 

�̇�(𝑡) = 𝐀(0)𝐱(𝑡) + 𝐵0 (𝜔0𝑢(𝑡) + 𝜃0
⊤𝐱(𝑡) + 𝜎𝑚(0)(𝑡)) + 𝐁𝑢𝜎𝑢(0)  

The bounds for the unknown time-varying parameters for the implementation of the projection operator were 𝜔0 ∈ [0.25,1.25], 
𝜃0 ∈ [−25,25], 𝜎𝑚(0) ∈ [−30,30] and 𝜎𝑢(0) ∈ [−30,30]. The adaptation gain is Γ = 1000. The filter parameters were 

𝐾0 = [

160 0 0 0
0 160 0 0
0 0 160 0
0 0 0 160

]  𝐷0(𝑠) =
1

𝑠
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

].  

It is straightforward to verify that the design verifies the stability condition in (18). The performance of the ℒ1 adaptive controller 

has been compared with the indirect Multiple Model Reference Adaptive Controller (M-MRAC) presented in [48]. Our aim is not to 

compare the two designs, as it has already been shown in [49] that the tracking performance and disturbance rejection of the MRAC 

controller are better with increasing adaptation gain. However, the MRAC controller exhibits poor attenuation of high-frequency content 

in the presence of large adaptation gain. On the other hand, the ℒ1 adaptive controller shows good disturbance rejection within the 

controller bandwidth in the presence of fast adaptation. However, the performance of the ℒ1 adaptive controller is limited by the low-

pass filter. 

Simulations were first made using only the nominal controller, i.e., the ℒ1 adaptive and the MRAC controllers with only the 

nominal model. The adaptation gain of the MRAC is Γ = 50.  

The objective is to change the altitude of the quadrotor while maintain it at the same horizontal (𝑥, 𝑦) position. Two situations 

were considered in this case: 

• Loss of effectiveness in rotor 1 of 50%; 

• Loss of effectiveness in rotor 1 of 50% with the inversion of the thrust direction. 

The failures were introduced at simulation time t = 13 s. 
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Simulation results for the nominal ℒ1 adaptive controller and the MRAC, without inversion of rotor signs, are shown in Figure 4. 

As expected, the system has good performance subsequent to the fault. The loss of altitude is within acceptable limits. Displacements 

in the X and Y positions are not meaningful. As expected, the ℒ1 adaptive controller shows better performance in transient regime, 

following the occurrence of the failure, while the MRAC is better in permanent regime. The rotor commands are within acceptable 

limits as it can be observed in Figure 5. 

In the second scenario of loss of effectiveness of 50% with the inversion of the sign of the thrust, the system with only the nominal 

controller has become unstable for both ℒ1 adaptive controller and MRAC, as it can be observed in Figure 6. 

Next, the multiple model controller was applied. It was based on the nominal controller and four degraded controllers designed to 

deal with possible inversion of rotor commands. 

 

Figure 4. Closed-loop tracking performance of the nominal controller without inversion of the sign of the thrust. 

 

Figure 5. Control input to the rotors without inversion of the sign of the thrust. 
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Figure 6. Closed-loop tracking performance of the nominal controller with inversion of the sign of the thrust. 

A second model for the case of inversion of the sign of rotor 1 command is given by 

�̇�(𝑡) = 𝐀(1)𝐱(𝑡) + 𝐁0𝛽1(𝜔1𝑢(𝑡) + 𝜽1
⊤𝐱(𝑡) + 𝜎𝑚(1)) + 𝐁𝑢𝜎𝑢(1)  

where 𝛽1 = diag(−1,1,1,1). 

A third model for the case of inversion of the sign of rotor 2 command is given by 

�̇�(𝑡) = 𝐀(2)𝐱(𝑡) + 𝐁0𝛽2(𝜔2𝐮(𝑡) + 𝜽2
⊤𝐱(𝑡)𝜎𝑚(2)) + 𝐁𝑢𝜎𝑢(2),  

where 𝛽2 = diag(1, −1,1,1). 

A fourth model for the case of inversion of both the signs of rotor 3 command is given by 

�̇�(𝑡) = 𝐀(3)𝐱(𝑡) + 𝐁0𝛽3(𝜔3𝐮(𝑡) + 𝜽3
⊤𝐱(𝑡) + 𝜎𝑚(3)) + 𝐁𝑢𝜎𝑢(3),  

where 𝛽3 = diag(1,1, −1,1). 

A fifth model for the case of inversion of both the signs of rotor 3 command is given by 

�̇�(𝑡) = 𝐀(3)𝐱(𝑡) + 𝐁0𝛽4(𝜔3𝑢(𝑡) + 𝜽3
⊤𝐱(𝑡) + 𝜎𝑚(4)) + 𝐁𝑢𝜎𝑢(4),  

where 𝛽4 = diag(1,1,1, −1). 

The input matrix 𝐁0 was taken to be the same for all models. 

The adaptation gain of the M-MRAC is Γ = 50. The filter parameters of the ℒ1 adaptive controller were the same as for the single 

model controller. Comparing with (30), the minimum realisation of 𝐃𝑖 is 

𝐀𝑓 = 0, 𝐁𝑓 = 0, 𝐂𝑓 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , 𝐃𝑓 = 0.  

The tuning parameters and the desired dynamics of the degraded controller were the same as the nominal controller. By defining 

the system similarly to (30), the stability condition of the reference system in Lemma 2 was verified using a common Lyapunov function. 

The previous failure cases were reproduced for the multiple model controller. The simulation results in the case of non inversion 

of the sign of propeller 1 are shown in Figures 7 and 8. The system has same behaviour than a single model controller. Furthermore, as 

it is shown on Figure 9, the matching model is the nominal model which corresponds on the minimum cost function defined in (27). 
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Figure 7. Closed-loop tracking performance of the multiple model controller without inversion of the sign of the thrust. 

 

Figure 8. Control input of the quadrotor using the multiple model controller without inversion of the sign of the thrust. 

 

Figure 9. Switching Function without of inversion of the sign of the thrust. 

For the second case of the inversion it can be seen in Figures 10 and 11 that the system has remained stable and shows good 

tracking performance. The aileron voltage commands to the propellers are within acceptable limits. It is worth noting that, in this case, 

the M-MRAC is exhibiting relatively poor performance when compared to the ℒ1 adaptive controller. This is attributed to the slow 

transient regime, and the attempt to enhance performance by increasing adaptation gains resulted in worse performance, as high-

frequency oscillations in the control input were observed. 
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Furthermore, it is shown in Figure 12, the matching model is model 1, which corresponds to the minimum cost function defined 

in (27). 

These simulations demonstrate that the application of the multiple model ℒ1 adaptive controller is justified in case of structural 

damages or faults that lead to inversion of the sign of the control input of quadrotor UAVs. 

 

Figure 10. Closed-loop tracking performance of the multiple model controller in case of inversion of the sign of the thrust. 

 

Figure 11. Control input of the multiple model controller in case of inversion of the sign of the thrust. 

 

Figure 12. Switching Function in case of inversion of the sign of the thrust. 
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6. Summary 

In this paper, an approach for fault-tolerant control of quadrotor UAVs in the presence of critical failure was presented based on 

ℒ1 adaptive control. The design is based on a nominal model for the plant in the presence of soft faults and a set of degraded models 

for the plant under critical failures. The switching between the models is based on a simple quadratic criterion.  

The main advantage of this approach is that it allows a larger class of uncertainties and faults to be considered and can achieve 

better fault accommodation and preserve system integrity. Simulations have shown that the multiple model ℒ1 adaptive has stabilized 

the system in case of inversion of the control input, while the controller with a single model failed. 

Nomenclature 

𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 = aerodynamic moment coefficients along the body axis  

𝐹𝐴, 𝐹CP, 𝐹𝑑 , 𝐹GB = vectors of forces, N 

𝐹𝑏, 𝐹𝑔, 𝐹𝑤 = the body fixed frame (centered at the CV),the Earth reference frame, and the windaxis frame  

𝑓𝐴𝑖 , 𝑓CP𝑖 , 𝑓𝑑𝑖 , 𝑓GB𝑖  = forces of 𝐹𝐴, 𝐹CP, 𝐹𝑑 , 𝐹GB along 𝑖 axis (𝑖 = 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), N 

𝑛𝐴𝑖 , 𝑛CP𝑖 , 𝑛𝑑𝑖 , 𝑛GB𝑖 = moments resulted by 𝐹𝐴, 𝐹CP, 𝐹𝑑 , 𝐹GB(𝑖 = 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), N ⋅ m 

𝑞‾ = dynamic pressure, Pa  

𝑇𝑝, 𝑇𝑠 = thrusts of the port side and the starboard side, N 

𝑉 = the generalized velocity in 𝐹𝑏 

𝑣, 𝑣𝑑 = airship practical and desired translational velocity vector [𝑢, 𝑣, 𝑤]𝑇 in 𝐹𝑏, 

𝑣𝑐 , 𝑣𝑟 = commanded and reference translational velocity vector in 𝐹𝑔, m/s[𝑣,𝜔]
𝑇 

𝛼, 𝛽 = angle of attack, side sliding angle, rad  

𝛿𝑒𝐿 , 𝛿𝑒𝑅 , 𝛿𝑟𝑈 , 𝛿𝑟𝐵, 𝜇 = left and right elevator, rad upper and bottom rudder, tilt angle of the propellers, rad  

𝜂, 𝜂𝑑 , 𝜂𝑟 = vectors of practical attitude, desired and reference attitude, rad 
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