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ABSTRACT: As alveolar epithelial stem cells, alveolar type II (AT2) cells play a pivotal role in sustaining alveolar homeostasis 

and facilitating repair processes. However, the sources of AT2 cell regeneration have remained contentious due to the non-specific 

labeling limitations of traditional single recombinase-based lineage tracing techniques. To address this issue, we employed dual 

recombination systems to develop more precise lineage tracing methodologies, effectively bypassing the shortcomings of 

conventional approaches and enabling specific labeling of lung epithelial cells. Our findings demonstrate that, following lung injury, 

regenerated AT2 cells do not originate from alveolar type I (AT1) cells, but instead derive from bronchiolar club cells and 

bronchioalveolar stem cells (BASCs), alongside the self-renewal of resident AT2 cells. Furthermore, we discovered that the 

transition of club cells and BASCs into AT2 cells is distinctly modulated by the Notch signaling pathway. This study not only 

provides novel insights into lung regeneration, but the innovative lineage tracing technology developed herein also holds promise 

as a technical support for research in diverse fields. 
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The alveolar epithelium of the lung comprises AT1 cells and AT2 cells. As alveolar stem cells, AT2 cells are 

capable of self-renewal and differentiation into AT1 cells during homeostasis and repair [1]. Identifying the cellular 

origins of AT2 cells following lung damage is vital for uncovering new therapeutic targets for various lung diseases to 

enhance tissue regeneration. However, the sources of AT2 cells have been subject to debate due to potential non-specific 

labeling by traditional genetic lineage tracing methods. Site-specific DNA recombination systems like the Cre-loxP 

system are frequently employed in cell lineage studies. The accuracy of promoter-driven Cre expression is critical for 

ensuring cell-specific labeling. If Cre recombinase is expressed under a promoter active in the target cells but also in 

unintended or "unwanted" cell types, then both cell types will be labeled following Cre-loxP recombination. This co-

labeling can result in misleading conclusions, as it suggests a lineage relationship where none may exist. It is crucial to 

ensure the specificity of promoter activity to avoid such inaccuracies in cell fate-mapping studies [2]. Therefore, it is 

essential to validate the specificity of lineage tracing tools prior to their use in cell fate-mapping studies. 

Recent lineage tracing studies have indicated that Hopx-CreER-labeled AT1 cells [3–7] and Scgb1a1-CreER-

labeled club cells [8,9] are progenitors of AT2 cells following alveolar damage. However, the labeling specificity of 

these genetic tools has not been rigorously evaluated. In our recent study, “Tracing the origin of alveolar stem cells in 

lung repair and regeneration” [10], we undertook a detailed examination of the non-specific labeling associated with 

conventional Hopx-CreER and Scgb1a1-CreER tools. Moreover, we employed dual recombinase-mediated genetic 

strategies to re-examine the cellular origin of AT2 cells during lung repair, enhancing the accuracy of lineage tracing 

in this context (Figure 1). 
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Our study uncovered that the Hopx-CreER genetic tool could inappropriately label unintended or “unwanted” cell 

types, including club cells, AT2 cells, bronchioalveolar stem cells (BASCs), and ciliated cells, besides the intended 

AT1 cells. Both AT2 cells and BASCs have been previously identified as stem/progenitor cells for regenerating AT2 

cells post-lung injury [11–17]. Similarly, another tool, Ager-CreER, also targeted AT2 cells and a subset of BASCs, in 

addition to AT1 cells. Likewise, the Scgb1a1-CreER tool could ectopically label BASCs and a subset of AT2 cells, in 

addition to its intended target, club cells [18]. Currently, there are no such specific Cre tools available that completely 

avoid this issue of non-specific labeling. 

To address this, we utilized the Dre-rox system, another homologous recombinase [19], in conjunction with the 

Cre-loxP system. By exploiting the mutual exclusion of ectopic labeling between Ager-CreER and Hopx-2A-DreER, 

we achieved an 83% efficiency in labeling Ager+Hopx+ AT1 cells using an intersectional dual genetic reporter system 

(R26-RSR-LSL-tdT). Additionally, we employed another dual recombination system (R26-NR2), which specifically 

traced Hopx+ AT1 cells with approximately 98% efficiency. Fate-mapping analysis confirmed that AT1 cells are 

terminally differentiated and do not de-differentiate into AT2 cells during injuries caused by pneumonectomy (PNX), 

bleomycin, or hyperoxia. These findings align with recent studies indicating that Hopx+Igfbp2+ AT1 cell subpopulations 

do not de-differentiate into AT2 cells in PNX-injured lungs [20]. The potential for AT1 cells to convert to AT2 cells 

under extreme conditions remains an area for further investigation. Such a transformation might require a stronger 

impetus, likely through genetic manipulation, to trigger a de-differentiation program in these terminally differentiated 

cells [21,22]. Exploring these conditions could open new pathways for enhancing lung repair and regeneration, offering 

promising avenues for therapeutic interventions in lung diseases. 

For club cells, AT2 cells, and BASCs, we employed an alternative intersectional dual genetic system (R26-TLR), 

which allowed for the simultaneous and specific labeling of these three distinct cell populations within a single mouse. 

This approach facilitated precise elucidation of their contributions to AT2 cell regeneration following lung injury. 

Utilizing various injury models revealed that the cellular plasticity of these cells varied depending on the type of lung 

injury encountered. In the PNX injury model, the regeneration of AT2 cells predominantly occurred through self-

renewal, with minimal contribution from club cells and BASCs. However, in the bleomycin-induced injury model, both 

club cells and BASCs significantly contributed to the regeneration of a substantial portion of AT2 and AT1 cells.  

To further explore the regenerative potential of club cells, we constructed two severe alveolar injury models. In 

the first model, we impaired the regenerative capacities of AT2 cells and bronchioalveolar stem cells (BASCs) in a 

bleomycin-injury scenario by ectopically expressing p21. In the second, we induced the depletion of AT2 cells and 

BASCs through diphtheria toxin (DT)-mediated cell death. Remarkably, club cells exhibited substantial plasticity and 

regenerative potential, contributing to the reconstitution of the majority of AT2 cells in some lung lobes following 

severe alveolar injury. This finding suggests that when the alveolar epithelium's native repair mechanisms are inhibited, 

club cells in the airway region are capable of completely reconstructing the alveolar structures in certain damaged areas. 

Employing combined single-cell RNA sequencing (scRNA-seq), cell-specific gene knockouts, and multiple cell lineage 

tracing techniques, we identified that Notch signaling has divergent regulatory effects on the differentiation of club cells 

and BASCs into AT2 cells post-injury. Specifically, inhibition of Notch signaling enhanced the conversion of BASCs 

into AT2 cells, whereas its activation prevented this transformation. Conversely, inhibition of Notch signaling limited 

the differentiation of club cells into AT2 cells, instead favoring their development into ciliated cells. 

In pulmonary diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung 

diseases induced by smoking, the damage to or senescence of AT2 cells significantly impairs the repair and regeneration 

of lung epithelial tissues. The transplantation of lung progenitor or stem cells presents a critical therapeutic strategy for 

treating these diseases [23]. Given the remarkable plasticity of club cells and BASCs in alveolar regeneration, directly 

delivering these progenitor cells into the alveolar region might facilitate immediate cell fate conversion, potentially 

enhancing the effectiveness of cell-based therapies. Furthermore, pharmacologically targeting pathways such as Notch 

signaling to modulate this plasticity offers an additional promising approach to develop successful treatments for 

pulmonary diseases. 

It should be noted that our findings appear to contradict a recent study, which suggested that inhibition of Notch 

signaling facilitates the transition of club cells to AT2 cells during repair processes [9]. This discrepancy may arise 

because the previous study employed Scgb1a1-CreER to trace both club cells and BASCs, complicating the 

differentiation of the effects of Notch signaling in each cell type [9]. Moreover, another study identified a distinct 

population of club cells, termed respiratory airway secretory cells (RAS), located in the human distal airways [24]. 

These cells exhibited a hybrid expression pattern characteristic of both club and AT2 cells, suggesting their role as 

progenitors in AT2 cell regeneration in pulmonary diseases [24]. In vitro experiments demonstrated that inhibition of 
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Notch signaling promotes the differentiation of RAS into AT2 cells [24], aligning with our findings concerning the 

regulation of BASCs by Notch. Given the similar features between BASCs and RAS, BASCs may provide an ideal in 

vivo model for studying the molecular and cellular mechanisms involved in lung repair. 

In conclusion, by employing dual recombinases-mediated genetic tracing, we have precisely labeled multiple types 

of pulmonary epithelial cells and revealed their cell capacity for contributing to AT2 cell regeneration following lung 

injury. The dual genetic strategies developed in this study surpass the conventional Cre-loxP system in targeting 

specificity and, in conjunction with cell lineage tracing, facilitate a more accurate investigation of molecular 

mechanisms. This advanced genetic lineage tracing technique will offer significant potential for exploring cell plasticity 

and fate decisions in various organs across development, disease states, and regenerative processes. 

 

Figure 1. The cellular origin of AT2 stem cells is diverse after lung injury. In the bleomycin-induced alveolar injury model, the 

regenerated AT2 cells originate from multiple sources, including club cells, BASCs, and the self-renewal of existing AT2 cells, but 

not from AT1 cells. Furthermore, Notch signaling exhibits opposite regulatory functions in the differentiation of club cells and 

BASCs into AT2 cells post-injury. Specifically, inhibition of Notch signaling decreases the conversion of club cells into AT2 cells, 

whereas promoting BASCs differentiation into AT2 cells. 
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