Sort by

Found 1 results

Article

23 October 2024

Federated Transfer Learning-Based Paper Breakage Fault Diagnosis

The diagnosis of paper breakage faults during the papermaking process is of great significance for improving product quality and maintaining stability in the production process. This paper develops a cross-condition transfer learning fault diagnosis model. This study proposes a fault diagnosis method based on transfer learning to address the issue of single-condition diagnostic models performing poorly when applied to different conditions..This method uses both parameter transfer and feature transfer to diagnose faults across different conditions. At the same time, in response to the issue of insufficient small sample operating data, we introduce federated learning technology to explore the impact of model compression rates on the diagnostic accuracy of the federated global model during the federated model training process. The results indicate that compared to single operating condition models, fault diagnosis performance based on transfer learning across different operating conditions has improved. The diagnostic model based on feature transfer performs even better, achieving accuracy rates of 98.31%, 94.64%, and 96.43% under different transfer tasks, allowing for accurate classification of the majority of samples. Additionally, the federated learning method provides an effective solution for fault diagnosis in small sample operating conditions, and an appropriate model compression rate can ensure diagnostic accuracy while protecting data privacy.

Keywords: Paper industry; Fault diagnosis; Deep learning; Transfer learning
TOP