This study aimed to investigate the age determination in forensic expert opinions at the Institute of Forensic Medicine (Mainz) over the last ten years and to determine the reliability rate of wisdom teeth in comparison to the clavicle. A total of 112 expert opinions were prepared between 2011 and 2021, following the guidelines established by the Working Group for Forensic Age Diagnostics (AGFAD). Five indicators were studied: clavicle development coded according to Wittschieber et al. using computed tomography and wisdom tooth development 18, 28, 38 and 48 coded according to Demirjian’s staging method in a dental panoramic radiograph. Following an ordinary least square regression analysis performed separately for each of the five indicators, it was possible to investigate whether the addition of more than one of the indicators would lead to a more predictive value for the age determination. The combination of the clavicle and tooth 48 showed the best value. Adding tooth 38, which showed the second-best prediction in the bivariate analyses, led to an increase of the explained variance of 11% to a total of 58% explained variance (p < 0.001). The addition of further wisdom teeth did not show any relevant effect. For the clinical performance of dental age diagnostics, the teeth of the mandible, in combination with the clavicle, should be primarily used.
Forensic odontology plays a crucial role in human identification, particularly in cases where traditional identification methods face challenges such as severe trauma, decomposition, skeletonization, or carbonization. The evolution of digital dentistry has significantly advanced dental autopsies, particularly through the use of intraoral scanners (IOSs). These devices provide a non-invasive and efficient method for capturing detailed impressions of dentition and photographic images of teeth. The benefits of intraoral scanning in analyzing human remains in forensic odontology are endless. Digital impressions can be easily stored, shared, and transmitted electronically, eliminating the need for physical storage or transportation of dental models. This technology also enables remote postmortem dental profiling. By combining digital models with antemortem dental records, forensic odontologists can more efficiently identify matches and discrepancies, with the added benefit of future advancements in artificial intelligence(AI). Intraoral scanning should be considered a routine process in all dental autopsies to improve postmortem dental data collection and archive. Forensic odontologists should be equipped with a portable X-ray device, a digital sensor, and an IOS.
Age estimation (AE) is a fundamental aspect used to establish the biological profile of both living and deceased individuals. This study evaluates AE methods to determine if bone development (BD) methods yield similar results to dental development (DD) and whether methods using samples with similar geographic origins, socioeconomic status (SES), chronology, data specificity, and/or anatomical regions yield consistent results. We hypothesized that BD and DD methods differ in age estimations, although these differences would be minor when methods have similar variables. The sample consisted of 11 immature skeletons from the Hospital Real de Todos os Santos’ collection (18th-century, Lisbon, Portugal) and applied 56 AE methods. The results were compiled into individual-based diagrams, facilitating both within- and between-individual comparisons, including stress-induced changes. This showed that BD methods tended to underestimate age compared to DD methods. BD methods closely aligning with DD methods were mainly based on individuals from lower to middle SES, focusing on areas like the iliac crest and medial clavicle. Findings also suggest that physiological stress might influence AE outcomes. This study emphasizes the importance of combining BD and DD methods alongside a detailed pathological and/or chronic stress assessment of human remains when estimating AE to minimize interpretative errors. This care applies to any discipline aiming to profile living or dead individuals, highlighting the importance of controlling for confounding variables, such as disease, in any AE estimation.
Age estimation is essential in forensic sciences. The examination of neurocranium suture closure, along with other methods, is used to estimate age in skeletal remains. The aim of this review was to identify in the literature methods used through neurocranial sutures for estimating age and analyze the recommendations by its researchers. One electronic research database, Pubmed, was investigated using the following restricted keywords: “age estimation”, “suture” and “forensic”. A search was conducted in March 2024 resulting in 12 articles being included in the final review. The articles were published between 2010 and 2024. Many studies recommend combining suture age estimation with other methods to improve accuracy in both dry skulls and CT scans, as cranial suture results alone are often insufficient. There is still no consensus on the endocranial versus ectocranial evaluation of sutures, with researchers calling for further studies. Population characteristics also affect results, highlighting the need for broader research. Despite its limitations, cranial suture closure remains valuable, with new technologies offering potential improvements.
Trace DNA represents a critical form of forensic evidence, frequently recovered from a wide variety of touched or used items. Despite its evidentiary value, trace DNA analysis poses significant challenges due to the minute quantities of DNA involved, as well as the influence of factors such as surface type, collection methods, and environmental exposure. This study systematically examines the success rates and characteristics of trace DNA profiles recovered from six-item categories—tools, stolen items, wearable items, packaging materials, vehicles, and touched items—processed between 2021 and 2023 by the Biology and DNA Section of the Dubai Police Force. A total of 6277 cases were analyzed, encompassing a range of crimes, including homicide, suicide, missing persons, paternity disputes, and burglary. The results demonstrated an overall trace DNA success rate of 64%, with wearable items yielding the highest success rate at 76% and packaging materials yielding the lowest at 54%. Detailed analysis of positive DNA trace samples revealed significant variability in DNA profile types across item categories. Wearable items and touched items predominantly yielded full single (FS) DNA profiles, reflecting their reliability as sources of singular and high-quality DNA. Conversely, stolen items and packaging materials showed a greater prevalence of full mixed (FM) DNA profiles, highlighting their association with complex mixtures due to handling by multiple contributors. Tools and vehicles, meanwhile, exhibited higher rates of partial profiles, presenting unique challenges related to surface irregularities and environmental factors. This study emphasizes the importance of tailoring forensic strategies to item-specific characteristics, as well as the need for systematic mechanisms to categorize trace samples. Addressing operational challenges such as manual sorting and leveraging automation or AI-based systems can further streamline trace DNA analysis. The findings also underscore the importance of data sharing and standardization across forensic laboratories to enhance trace DNA recovery protocols and improve reliability in forensic investigations. Future research should focus on the effects of material properties, environmental exposure, and collection techniques on DNA retention, advancing the field of trace DNA profiling and its applications in forensic science.
The relationship between quality of life (QoL) and group climate is a complex but crucial topic within forensic psychiatry. The QoL of forensic psychiatric patients is influenced by internal and external factors, with group climate potentially assuming a pivotal role in this process. This study aims to gain insight into the relationship between group climate and QoL in a long-term forensic ward in Belgium. Patients (n = 29) completed the Forensic Inpatient Quality of Life Questionnaire—Short Version (FQL-SV), the Essen Climate Evaluation Schema (EssenCES) and the Group Climate Inventory Revised (GCI-R), staff members (n = 22) completed the FQL-SV and the EssenCES. The agreement between QoL rated by patients and staff, the agreement with the current group climate, and the relationships between QoL and group climate were investigated. Overall, the results indicated a high QoL and a positive group climate. Compared with patients, staff members were assigned significantly lower scores on the QoL scale, but no significant differences were found with regard to group climate. A number of facets of group climate correlated positively with perceived QoL. In conclusion, it seems important for forensic institutions to prioritize a positive and enhanced group climate in long-term forensic wards, given the potential correlation with the QoL of patients.