Issue 1, Volume 3 – 2 articles

Review

30 December 2024

Fire-Retardant Wastepaper Reinforced Waste Polyethylene Composite: A Review

The increase in fire outbreaks recently and the need for eco-friendly and fire-resistant materials have inspired a wave of studies, focusing on producing innovative composite materials with effective fire-resistant properties. This review delves into the world of fire-resistant wastepaper-reinforced waste polyethylene composites. Using wastepaper as a strengthening factor in polyethylene matrices, combined with fire-retardant additives like nanoparticles, introduces a hopeful path for waste management and improved material properties. This work carefully considers the combining approaches, physical and mechanical properties, fire-resistant mechanisms, and environmental impacts of these composites. The review underscores the possible and potential applications, difficulties, and prospects of such environmentally friendly materials in various industries. Understanding these composites’ blending, attributes, and conceivable utilization is essential for advancing maintainable and fire-safe material innovation in pursuing a greener future.

Communication

08 January 2025

Development of Eco-Friendly Composites Using Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Diss Fibers (Ampelodesmos Mauritanicus)

In response to the growing environmental threats and pollution linked to synthetic plastics, current scientific inquiry is prioritizing the advancement of biodegradable materials. In this context, this study investigates the possibility of developing fully biodegradable materials using plant fibers extracted from the Diss plant (Ampelodesmos mauritanicus) as reinforcement in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based biocomposites. The biocomposites were prepared by melt blending in the following weight ratio: PHBV/Diss fibers 80/20. The chemical structure of Diss fibers was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray fluorescence spectrometry (XRF). The impact of Diss fibers on the mechanical properties of biocomposites has also been investigated in comparison to neat PHBV. FTIR and XRF analyses identified cellulose, hemicellulose, and lignin as the main components of Diss fibers. On the other hand, the results showed a significant enhancement of Young’s modulus (⁓21%) of PHBV/DF biocomposites in comparison to neat PHBV due to a better dispersion of the fibers in the matrix, as confirmed by atomic force microscopy (AFM) images.

TOP