Sort by

Artiles

Article

20 December 2024

Preparation of a New Shape-Stable Phase-Change Material Based on Expanded Perlite, Paraffin, Epoxy, Copper and High-Density Polyethylene

Phase change materials (PCMs) face challenges such as low thermal conductivity and leakage, often addressed through attempts at encapsulation or integration into polymer matrices or porous materials. This study uses expanded perlite to prepare a PCM composite. The perlite is treated with hydrochloric acid to remove impurities and improve its absorption, then impregnated with paraffin at 65 °C, with the addition of copper to enhance thermal conductivity. After drying, the material was coated with epoxy resin to prevent leakage and mixed with high-density polyethylene (HDPE) to improve its mechanical strength and facilitate integration with other materials. Characterization techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), evaluate the structure and properties of the composite. TGA results show that acid treatment increases paraffin absorption to 80% by weight, while weight loss tests confirm the effectiveness of the epoxy coating against leaks. A decrease in melting temperatures was observed in all HDPE blends, ranging from 4.72 °C to 9.58 °C, likely due to the integrated elements interfering with the reorganization of the molecular chains of HDPE. Although the preparation improved thermal conductivity, thermal tests revealed that increasing the (perlite/PCM) phase in HDPE is essential for further optimization, highlighting the potential of the composite as an effective energy storage solution for sustainable systems.

Keywords: Composite; Energy storage; Expanded perlite; Thermal conductivity; Paraffin; High-density polyethylene; Phase change material

Article

20 December 2024

The Sum of One’s Parts: Exploring Bone and Dental Age Assessment in Age Estimation Methods

Age estimation (AE) is a fundamental aspect used to establish the biological profile of both living and deceased individuals. This study evaluates AE methods to determine if bone development (BD) methods yield similar results to dental development (DD) and whether methods using samples with similar geographic origins, socioeconomic status (SES), chronology, data specificity, and/or anatomical regions yield consistent results. We hypothesized that BD and DD methods differ in age estimations, although these differences would be minor when methods have similar variables. The sample consisted of 11 immature skeletons from the Hospital Real de Todos os Santos’ collection (18th-century, Lisbon, Portugal) and applied 56 AE methods. The results were compiled into individual-based diagrams, facilitating both within- and between-individual comparisons, including stress-induced changes. This showed that BD methods tended to underestimate age compared to DD methods. BD methods closely aligning with DD methods were mainly based on individuals from lower to middle SES, focusing on areas like the iliac crest and medial clavicle. Findings also suggest that physiological stress might influence AE outcomes. This study emphasizes the importance of combining BD and DD methods alongside a detailed pathological and/or chronic stress assessment of human remains when estimating AE to minimize interpretative errors. This care applies to any discipline aiming to profile living or dead individuals, highlighting the importance of controlling for confounding variables, such as disease, in any AE estimation.

Keywords: Age estimation; Skeletal maturation; Dental development; Individual health

Article

18 December 2024

EU Energy Law: Insufficient for the 1.5-Degree Celsius Limit—The Examples of EU Emissions Trading and Hydrogen Policies

This article examines the extent to which the current EU climate protection law fulfils the 1.5-degree limit from Article 2 of the Paris Climate Agreement. To this end, a qualitative governance analysis is applied. On this methodological basis, the main instrument for fossil phasing-outthe emissions trading schemeand the promotion of hydrogen are discussed as examples. The results show that the EU must further intensify its efforts on its territory and cooperate with other countries since the reformed ETS 1 and ETS 2, the SCF and the CBAM are not sufficiently effective to stay within the 1.5-degree limit of the Paris Agreement. This is also the case with regard to hydrogen policies. The primary focus of energy law on the ETS is therefore fundamentally convincing; however, it should be implemented more consistently, for example, in terms of the breadth of the approach, closing loopholes and the level of ambition.

Keywords: Energy; Climate; EU emissions trading; Paris Agreement; EU law; Hydrogen

Article

17 December 2024

Upcycling of Waste Poly(ethylene terephthalate) into 2,4-Pyridine Dicarboxylic Acid by a Tandem Chemo-Microbial Process

This study presents a chemo-microbial cascade process for the upcycling of waste poly(ethylene terephthalate) (PET) into valuable compound 2,4-pyridine dicarboxylic acid (2,4-PDCA). Initially, waste PET undergoes efficient hydrolysis to terephthalic acid (TPA) with a high yield of 92.36%, catalyzed by p-toluenesulfonic acid (PTSA). The acid catalyst exhibits excellent reusability, maintaining activity over five cycles. Subsequently, a one-pot, two-step whole-cell conversion system utilizing genetically modified Escherichia coli strains (E. coli PCA and E. coli 2,4-PDCA) converts the generated TPA into 2,4-PDCA. By integrating the PET hydrolysis module with the 2,4-PDCA biosynthesis module, the study achieves an impressive overall efficiency of 94.01% in converting challenging PET waste into valuable 2,4-PDCA. Our research presents a rational design strategy for PET upcycling and 2,4-PDCA synthesis methods. This research provides a systematic approach to PET upcycling, demonstrating its feasibility and potential for industrial application.

Keywords: Poly(ethylene terephthalate); Plastic upcycling; Chemo-microbial process; 2,4-Pyridine dicarboxylic acid

Article

16 December 2024

Price and Output Response of Major Food Grains of Nadia District of West Bengal

The price and output response of food crops is a critical area in agricultural economics as this interaction refers to how the quantity of food grains supplied responds to changes in market prices. This research investigates the surplus ratios and price elasticities for rice, lentil, and gram in the Nadia district of West Bengal. Two hundred farmers were interviewed in different villages of the district and information was collected regarding socio-economics, marketed surplus and, selling price, etc. Further, elasticity and a modified version of the Raj Krishna model have been employed. The findings reveal that for rice, the ratios of gross, net marketed, and marketable surplus are 69.59%, 55.46%, and 16.27%, respectively. The gross marketed surplus ratio decreases with a reduction in farm size, while net marketed and marketable surpluses increase as farm size expands. For lentils, the gross and net marketed surplus ratios are recorded at 66.64% and 65.57%, with an average marketable surplus of 35.30%. Marginal gram farmers have a gross marketed surplus ratio of 80.33%, slightly lower than the overall average of 81.12%, whereas larger farms exceed this average, with ratios of 82.19% and 83.18%. Output elasticities for rice are positive and exceed unity for both marginal and large farms, at 1.03 and 1.45, respectively, though slightly below unity at 0.85 for small farms. The average elasticity for rice across all farm sizes is 1.12. Lentil output elasticities are also positive and greater than unity for marginal and large farms (1.00 and 1.07, respectively) but fall below unity at 0.78 for medium farms, with an overall average of 0.91. The output elasticities for gram remain consistently positive and above unity across all farm sizes, averaging 1.09.

Keywords: Supply response; Marketable surplus; Price elasticity; Food grains; Agricultural production

Article

16 December 2024

Exploring the Values of Sustainability and the Cost of Going Green: A Case of Building Research Establishment Environmental Assessment Method (BREEAM)

Despite the expansion of BREEAM and the benefits of adopting sustainable building practices, there are concerns that the cost of going green may outweigh the benefits. Whilst previous studies have not provided adequate clarity in this regard, there is consensus among scholars that BREEAM provides indirect benefits that can be considered as added value. This paper aims to investigate the potential cost implication and benefits of sustainable building practices from the lens of the Building Research Establishment Environmental Assessment Method (BREEAM) in the UK. Adopting survey research strategy, questionnaires, and interviews with 34 construction industry professionals in Southeast England were conducted to investigate their perceptions of BREEAM, the extra value it contributes to projects, and the possible limitations hindering its wider adoption. Findings show that while there is an upfront investment associated with achieving BREEAM certification, the benefits of such certification include added values such as improved environmental performance, increased market appeal, improved indoor air quality, reduced carbon emissions, and lower operational costs. This study validates the need to encourage wider adoption of sustainable building practices and promote the use of the BREEAM methodology in the UK. This research provides a foundation for future research and development in this area, with the goal of reducing carbon emissions and promoting sustainable development.

Keywords: BREEAM; Benefits; Cost; Construction industry; Sustainability; Values

Commentary

16 December 2024

State of the ART: Drug Screening Reveals Artesunate as a Promising Anti-Fibrosis Therapy

Fibrosis is a progressive pathological process that severely impairs normal organ function. Current treatments for fibrosis are extremely limited, with no curative approaches available. In a recent article published in Cell, Zhang and colleagues employed drug screening using ACTA2 reporter iPSC-derived cardiac fibroblasts and identified artesunate as a potent antifibrotic drug by targeting MD2/TLR4 signaling. This study provides new insights into strategies for exploiting existing drugs to treat fibrosis.

Keywords: Fibrosis; Drug screening; Artesunate; MD2/TLR4

Research Highlight

13 December 2024

F-ZrO2 Based, Solar Driven Photocatalytic Production of High-Purity CO from Formic Acid

High-purity carbon monoxide is crucial for various industrial applications, but current production methods are costly and require complex purification steps. A photothermal approach has been explored for producing high-purity carbon monoxide from formic acid, optimizing conditions to favor the dehydration pathway and minimizing hydrogen contamination. Using zirconium dioxide-based catalysts and sunlight-driven processes enhances efficiency, achieving high-purity carbon monoxide with reduced hydrogen by-products. The photothermal technique offers a promising, sustainable method for high-purity carbon monoxide production from formic acid, which could significantly reduce industrial costs and environmental impact.

Keywords: CO; Formic acid decomposition; Photothermal catalysis; ZrO2

Article

12 December 2024

Adsorption of Bisphenol A and 2,6-Dichlorophenol in Water Using Magnetic Phosphogypsum Composite Materials

Phenolic pollutants in water bodies pose a huge threat to human health and environmental safety. In this paper, a hydrophobicity-enhanced magnetic C-SiO2/MPG composite was prepared by a two-step method to remove bisphenol A (BPA)and 2,6-dichlorophenol (2,6-DCP), typical phenolic trace pollutants in livestock wastewater and natural water bodies. The results of pH gradient experiments showed that C-SiO2/MPG showed a stable removal effect on BPA in the pH range of 211. The adsorption of 2,6-DCP by C-SiO2/MPG peaked at pH = 2, while the adsorption of 2,6-DCP by C-SiO2/MPG was severely inhibited under alkaline conditions. The PSO kinetic model and the Langmuir isotherm model can better describe the adsorption process of BPA and 2,6-DCP on C-SiO2/MPG, indicating that the monolayer chemical adsorption has a rate-controlling step. With the Langmuir equation fitting, the maximum adsorption capacity of C-SiO2/MPG for BPA and 2,6-DCP at 298 K was calculated to be 561.79 mg/g and 531.91 mg/g, respectively. The results of adsorption thermodynamics indicated that the adsorption of BPA and 2,6-DCP on C-SiO2/MPG was spontaneous, accompanied by a process of entropy decrease. C-SiO2/MPG showed good environmental resistance and repeated use stability for BPA and 2,6-DCP in electrolyte ion interference, actual water samples and cycle experiments. Mechanism analysis showed that the adsorption of BPA and 2,6-DCP on C-SiO2/MPG was mainly controlled by hydrogen bonding and hydrophobic interactions. This study designed an efficient adsorbent for phenolic pollutants that can be used in actual wastewater and broadened the resource utilization of industrial waste phosphogypsm.

Keywords: Phosphogypsum; Magnetic nanoparticles; Hydrophobic alkyl chains; Adsorption; Phenolic pollutants; Water pollution

Article

10 December 2024

Sailing the X.0 Wave Theory: Navigating the Future of Civilization

This paper delves into the X.0 Wave/Tomorrow Age Theory, a comprehensive framework conceived, invented, introduced, and developed by Prof. Dr. Hamid Mattiello between 2010 and 2017, to analyze the evolution of human civilization through distinct epochs of knowledge, technology, and business (KTB). The theory segments history into transformative waves, from the first development (X.0 ≤ 1.0) and Agricultural Age (X.0 = 1.0) and the X.0 Wave/Tomorrow Age Theory (2.1 ≤ X.0 ≤ 2.2) spanning the 17th Century to 1870, to the current Age of Artificial Intelligence (X.0 = 4.0). It also projects into the anticipated Human Age (X.0 = 5.0) and Transhuman Age (X.0 = 6.0) and beyond (6.0 ≤ X.0). Each wave represents a revolutionary phase characterized by significant advancements that shape societies, industries, and technologies. The X.0 Wave Theory integrates these historical phases with the Seven Pillars of Sustainability (7PS) to evaluate their societal impacts. The paper explores how these waves influence future developments by examining historical roots, emerging technological paradigms, and socio-economic dynamics. It examines how advancements in AI, biotechnology, and virtual reality are reshaping industries and global business practices, while also addressing the ethical and sustainability considerations essential for navigating these changes. By forecasting future trends, confronting current challenges, and preparing for potential crises, the X.0 Wave Theory offers a robust framework for understanding and adapting to the rapid pace of technological evolution. This paper provides deep insights into how these transformative waves shape our past, present, and future, offering valuable perspectives for navigating the complexities of an increasingly digital and interconnected world.

Keywords: The X.0 Wave/Tomorrow age theory; Human civilization evolution; Knowledge; Technology; Business epochs (KTB) model; AI (Artificial Intelligence); Human and transhuman age; Seven pillars of sustainability (7PS) model; Technological paradigms; Socio-economic dynamics; Biotechnology; Virtual reality; Ethical considerations; Sustainability; Future trends; Technological evolution
TOP