Sort by

Artiles

Open Access

Article

14 October 2025

Electrical Characterization, Optical Micrographs, and the Compositional Analyses of Al-Glass/C-Glass Composites

This report shows the resistance (r) of Carbon-Glass composites and the Current/Voltage (I-V) characterization of Al-Glass composites. The optical micrographs and elemental determination of Carbon-Glass and Al-Glass are in this record. The effects of pressure and the influence of particle size on the electrical properties of these composites are included. The sample area, thickness range, and particle size are respectively 34.0 × 35.0 mm2, 20.8–22.10 mm, and 100 µm. The constituents of the same particle size were made into solids by applying a pressure of 30 MPa. The results obtained from examinations showed that the composition of Al in glass, compaction pressure, and particle size significantly influenced the resistance and the electrical I-V relationship of the compacted materials. The electrical properties of samples are within the range of 10–50% weight of Al in composites, and 0–100% weight of carbon in composites. The resistance of Carbon-Glass is sinusoidal with Mega Ohms values. The current variation of Al-Glass composites is also a sine wave in the I-V display, which is between 0 and 10 µA. The Current-Voltage notation is with sinusoidal resolution for Al-Glass composites. The voltage range is from −0.5 V to 1.0 V.

Keywords: Pressure; Particle size; Resistance; Current; Voltage; PIXE; RBS
Adv. Mat. Sustain. Manuf.
2025,
2
(4), 10014; 
Open Access

Review

11 October 2025

Evolutionary Game Theory for Sustainable Energy Systems: Strategic Bidding, Carbon Pricing, and Policy Optimization for Clean Energy Development

As the world transitions toward a low-carbon economy, carbon pricing mechanisms, including carbon taxes and emissions trading systems, have emerged as fundamental policy instruments for reducing greenhouse gas emissions, particularly within the electricity sector. This comprehensive review examines the impact of these mechanisms on energy market dynamics through the analytical framework of evolutionary game theory (EGT), modeling strategic interactions among power generation companies, renewable energy firms, and regulatory authorities. Our analysis demonstrates that carbon pricing systematically increases operational costs for fossil fuel-based power plants while simultaneously providing competitive advantages to renewable energy producers, accelerating the adoption of cleaner energy technologies. The study emphasizes the critical role of coordinated policy interventions, including subsidies, penalties, and green certificate systems, in facilitating the adoption of clean technologies and optimizing market transition pathways. These findings underscore the importance of well-designed policy frameworks that align economic incentives across all stakeholders to drive sustainable energy system transformation. Additionally, this research demonstrates how EGT can effectively model the strategic bidding behavior of energy firms, providing valuable insights for optimal decision-making under carbon pricing fluctuations. Through comprehensive case studies and simulation analysis, the paper illustrates how firms can leverage evolutionary strategies to optimize investments in clean technologies, enhance inter-firm cooperation, and stabilize market dynamics. This work further explores future research directions, particularly the integration of machine learning and real-time data analytics with EGT to enhance predictive capabilities and strategic decision-making processes. By establishing connections between EGT and real-world energy market dynamics, this study provides a robust analytical framework for understanding long-term behavioral trends in energy markets. The results contribute significantly to the interdisciplinary literature at the intersection of game theory, energy policy, and sustainability science, offering valuable insights for policymakers, researchers, and industry leaders advancing clean energy transition strategies.

Keywords: Evolutionary game theory; Renewable energy systems; Carbon pricing mechanisms; Strategic bidding optimization; Energy market dynamics; Sustainability policy optimization
Smart Energy Syst. Res.
2025,
1
(2), 10006; 
Open Access

Article

11 October 2025

Catalytic Potential of Green-Synthesized Iron Nanoparticles from Psidium guajava for 4-Nitrophenol Reduction

This study presents a sustainable approach for the green synthesis of iron nanoparticles (Fe(NPs)) using an aqueous extract of Psidium guajava (guava leaves) as a reducing and stabilizing agent. The FeNPs were applied in the catalytic reduction of 4-nitrophenol. To minimize the use of sodium borohydride (NaBH4), different volumetric ratios of plant extract and NaBH4 were tested. The influence of these ratios on the physicochemical and morphological properties of the FeNPs was evaluated using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), high-resolution field-emission SEM (HR-FESEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and N₂ physisorption. Increasing the proportion of plant extract led to reduced crystallinity, larger particle sizes, and lower surface areas. Despite these changes, using up to 40% extract improved catalytic performance, achieving over 90% reduction of 4-nitrophenol. Ecotoxicological assessments confirmed the biocompatibility of the FeNPs, the effective neutralization of 4-nitrophenol toxicity post-reduction, and highlighted the inherent toxicity of NaBH4. These findings demonstrate the potential of Psidium guajava-mediated FeNPs as eco-friendly catalysts for pollutant reduction, combining efficiency with reduced environmental impact.

Keywords: Iron oxides; Stabilization; Vegetable coating; Sodium borohydride; Ecotoxicological tests
Open Access

Editorial

11 October 2025
Open Access

Article

10 October 2025

Guidance and Control System for an Unmanned Combat Aerial Vehicle as a Wingman

This study focuses on designing and testing a formation guidance system for a UCAV as a wingman to an F-16 fighter jet. A critical assessment of the UCAV autopilot revealed areas for improvement, which were addressed to refine the stable foundation of the autopilot for implementing the guidance system. This system uses PID controllers to minimise the along-track, cross-track, and vertical-track errors during standard manoeuvres. The system performed exceptionally well in the vertical (z) direction but showed robustness challenges in the along-track (x) and cross-track (y) directions under wind disturbances. A notable outcome was the identification of a novel mathematical relationship between the along-track offset command and its gains, offering a pathway for advanced formation systems. These findings pave the way for future enhancements in diverse formation operations.

Keywords: Wingman operation; Formation flying; Guidance; PID control
Drones Veh. Auton.
2025,
2
(4), 10017; 
Open Access

Review

10 October 2025

The Heterogeneity and Functional Roles of Dendritic Cells in Atherosclerosis: Origins, Subsets, and Therapeutic Implications

Atherosclerosis, a chronic inflammatory disease of the arterial wall, is driven by dysregulated immune responses. Dendritic cells (DCs), as central orchestrators of innate and adaptive immunity, accumulate in atherosclerotic lesions and critically influence disease progression through their roles in lipid metabolism, antigen presentation, and cytokine signaling. Recent advances in single-cell omics and genetic lineage tracing have unveiled the functional diversity of DC subsets, including conventional DCs (cDC1, cDC2), plasmacytoid DCs (pDCs), and monocyte-derived DCs (Mo-DCs), in shaping plaque inflammation, immune tolerance, and tissue repair. However, the mechanisms underlying DC heterogeneity, recruitment, and crosstalk with other immune and vascular cells remain incompletely understood. This review summarizes current knowledge on DC ontogeny, subset-specific functions, and their interplay with T cells, B cells, endothelial cells (ECs), and smooth muscle cells in Atherosclerosis. We also critically evaluate transgenic models for DC research and emerging DC-targeted therapies, including tolerogenic vaccines and nanoparticle-based strategies. Unresolved questions about spatial distribution, functional duality, and ontogenetic pathways are discussed to guide future investigations.

Keywords: Dendritic cells; Atherosclerotic plaques; Vascular cells; Mouse models
Immune Discov.
2025,
1
(4), 10014; 
Open Access

Article

10 October 2025

Immunoprofiling of Alcohol-Activated Hepatic Stellate Cells Reveals Mechanisms of Immune Evasion through NK/T Lymphocyte Checkpoint Signaling

Chronic alcohol consumption induces the pathogenic activation of hepatic stellate cells (HSC) and their conversion into proliferative myofibroblasts (Myo), which together constitute a disease hub in alcohol-associated liver disease (AALD). While natural killer (NK) lymphocytes efficiently target early activated HSC and ameliorate liver fibrosis in mouse models of diet- and alcohol-induced liver disease, late-activated HSC evade immune surveillance. To gain insight into evasive resistance mechanisms, we profiled the expression of immunoregulatory ligands by HSC and showed that HSC dynamically express CD80, a B7-family ligand that suppresses NK and T cell responses. Using a mouse model of acute-on-chronic alcohol consumption, we show that combined blockade of the CTLA-4//TIGIT/PD-1 inhibitory checkpoints overcomes this resistance mechanism, promoting the selective elimination of activated HSC (aHSC)/Myo, yet fails to diminish fibrosis or ameliorate liver function. Single-cell transcriptome profiling of liver non-parenchymal cells revealed that checkpoint blockade promotes hepatic infiltration of pro-fibrotic Th1 and Th17 T cell subpopulations, while decreasing immunosuppressive Treg. Strikingly, antibody-directed engagement of the PD-1 and TIGIT checkpoints also fails to reduce fibrosis or improve liver function. Thus, selective targeting of aHSC/Myo may be necessary to achieve significant therapeutic benefit.

Keywords: AALD; Immunotherapy; Checkpoint; Hepatic stellate cell
Fibrosis
2025,
3
(4), 10012; 
Open Access

Article

09 October 2025

Identification of Pathways That Drive Myofibroblast Transformation in Hypertrophic Scars

Hypertrophic scars (HTS) are a common complication of burn injuries and are characterized by excessive dermal fibrosis driven by the transformation of resident dermal fibroblasts to profibrotic myofibroblasts. Although single cell and bulk RNA transcriptomics analysis of HTS and normal skin tissue samples were performed previously, transcriptomics of the transformation of fibroblasts to myofibroblasts has not been studied. Here, we report the data obtained from RNA sequencing of fibroblasts before and after exposure to transforming growth factor beta 1 (TGF-β1) and highlight the pathways that are up- and down-regulated during myofibroblast transformation. Our results suggest increased cellular signalling and rewiring, proliferative surge, immune-like and metabolic reprogramming, and delayed structural remodelling as four groups of events during the transformation of human primary dermal fibroblasts to myofibroblasts.

Keywords: Fibrosis; Hypertrophic scar; Fibroblast; Myofibroblast; Transforming growth factor beta 1; Skin; Burns
Open Access

Case Report

09 October 2025

A Case Report of Telehealth Assessment for Adolescent Anxiety, Depression and COVID-Related Grief

Rates of anxiety and depression in children and adolescents have steadily risen over the past decade, and the arrival of COVID-19 exacerbated existing psychological problems for many youth. In the context of these increased rates and the pandemic lockdown, telepsychology, including virtual assessment, evolved as a cornerstone of mental health practice. There are salient benefits to telepsychology, most notably its convenience and accessibility, which have contributed to its expanded application across different types of problems and populations. At the same time, it can pose challenges in acquiring a comprehensive picture of client functioning. This article presents a case study of an adolescent with combined anxiety and depression who was referred for teletherapy during COVID-19, with an emphasis on the assessment intake. Results from a multi-method approach to the assessment are provided along with a brief discussion of treatment and future implications for the practice of telepsychology with youth and families.

Keywords: Telepsychology; Telehealth; Teletherapy; Teleassessment; Adolescent; Anxiety; Depression; Case study
Lifespan Dev. Ment. Health
2025,
1
(4), 10016; 
Open Access

Article

09 October 2025

Preparation of CdS-BaZrO3 Heterojunction for Enhanced Photocatalytic Water-Splitting Hydrogen Production

Photocatalytic water splitting using solar light, a promising technical approach for hydrogen production. However, the slow charge transfer and rapid recombination of photogenerated charge carriers in photocatalysis limit their practical application. To address these issues, in this work, we successfully prepared a novel CdS-BaZrO3 (CdS-BZO3) heterojunction via a simple chemical-bath deposition method. The as-prepared heterojunctions facilitate the separation and transportation of photogenerated charges, while also maintaining the high redox-oxid ation ability of the photocatalysts. As a result, CdS-BZO3 heterojunctions show enhanced photocatalytic water-splitting hydrogen production ability without a co-catalyst. Especially, the optimized CdS-BZO3 sample exhibits high photocatalytic activity with a hydrogen production rate of 44.77 μmol/h, which is 4.4 and 2.9 times higher than that of BZO3 and CdS, respectively. At the same time, the CdS-BZO3 heterojunction exhibits good stability in the photocatalytic hydrogen production cycle test. This work provides a reference for the heterostructure construction of perovskite-based photocatalysts to improve photocatalytic performance.

Keywords: Photocatalysis; Perovskite; BaZrO3/CdS; Type I heterojunction; Hydrogen production
Photocatal. Res. Potential
2025,
2
(4), 10018; 
TOP