Sort by

Artiles

Article

18 December 2024

EU Energy Law: Insufficient for the 1.5-Degree Celsius Limit—The Examples of EU Emissions Trading and Hydrogen Policies

This article examines the extent to which the current EU climate protection law fulfils the 1.5-degree limit from Article 2 of the Paris Climate Agreement. To this end, a qualitative governance analysis is applied. On this methodological basis, the main instrument for fossil phasing-outthe emissions trading schemeand the promotion of hydrogen are discussed as examples. The results show that the EU must further intensify its efforts on its territory and cooperate with other countries since the reformed ETS 1 and ETS 2, the SCF and the CBAM are not sufficiently effective to stay within the 1.5-degree limit of the Paris Agreement. This is also the case with regard to hydrogen policies. The primary focus of energy law on the ETS is therefore fundamentally convincing; however, it should be implemented more consistently, for example, in terms of the breadth of the approach, closing loopholes and the level of ambition.

Keywords: Energy; Climate; EU emissions trading; Paris Agreement; EU law; Hydrogen

Article

17 December 2024

Upcycling of Waste Poly(ethylene terephthalate) into 2,4-Pyridine Dicarboxylic Acid by a Tandem Chemo-Microbial Process

This study presents a chemo-microbial cascade process for the upcycling of waste poly(ethylene terephthalate) (PET) into valuable compound 2,4-pyridine dicarboxylic acid (2,4-PDCA). Initially, waste PET undergoes efficient hydrolysis to terephthalic acid (TPA) with a high yield of 92.36%, catalyzed by p-toluenesulfonic acid (PTSA). The acid catalyst exhibits excellent reusability, maintaining activity over five cycles. Subsequently, a one-pot, two-step whole-cell conversion system utilizing genetically modified Escherichia coli strains (E. coli PCA and E. coli 2,4-PDCA) converts the generated TPA into 2,4-PDCA. By integrating the PET hydrolysis module with the 2,4-PDCA biosynthesis module, the study achieves an impressive overall efficiency of 94.01% in converting challenging PET waste into valuable 2,4-PDCA. Our research presents a rational design strategy for PET upcycling and 2,4-PDCA synthesis methods. This research provides a systematic approach to PET upcycling, demonstrating its feasibility and potential for industrial application.

Keywords: Poly(ethylene terephthalate); Plastic upcycling; Chemo-microbial process; 2,4-Pyridine dicarboxylic acid

Article

16 December 2024

Price and Output Response of Major Food Grains of Nadia District of West Bengal

The price and output response of food crops is a critical area in agricultural economics as this interaction refers to how the quantity of food grains supplied responds to changes in market prices. This research investigates the surplus ratios and price elasticities for rice, lentil, and gram in the Nadia district of West Bengal. Two hundred farmers were interviewed in different villages of the district and information was collected regarding socio-economics, marketed surplus and, selling price, etc. Further, elasticity and a modified version of the Raj Krishna model have been employed. The findings reveal that for rice, the ratios of gross, net marketed, and marketable surplus are 69.59%, 55.46%, and 16.27%, respectively. The gross marketed surplus ratio decreases with a reduction in farm size, while net marketed and marketable surpluses increase as farm size expands. For lentils, the gross and net marketed surplus ratios are recorded at 66.64% and 65.57%, with an average marketable surplus of 35.30%. Marginal gram farmers have a gross marketed surplus ratio of 80.33%, slightly lower than the overall average of 81.12%, whereas larger farms exceed this average, with ratios of 82.19% and 83.18%. Output elasticities for rice are positive and exceed unity for both marginal and large farms, at 1.03 and 1.45, respectively, though slightly below unity at 0.85 for small farms. The average elasticity for rice across all farm sizes is 1.12. Lentil output elasticities are also positive and greater than unity for marginal and large farms (1.00 and 1.07, respectively) but fall below unity at 0.78 for medium farms, with an overall average of 0.91. The output elasticities for gram remain consistently positive and above unity across all farm sizes, averaging 1.09.

Keywords: Supply response; Marketable surplus; Price elasticity; Food grains; Agricultural production

Article

16 December 2024

Exploring the Values of Sustainability and the Cost of Going Green: A Case of Building Research Establishment Environmental Assessment Method (BREEAM)

Despite the expansion of BREEAM and the benefits of adopting sustainable building practices, there are concerns that the cost of going green may outweigh the benefits. Whilst previous studies have not provided adequate clarity in this regard, there is consensus among scholars that BREEAM provides indirect benefits that can be considered as added value. This paper aims to investigate the potential cost implication and benefits of sustainable building practices from the lens of the Building Research Establishment Environmental Assessment Method (BREEAM) in the UK. Adopting survey research strategy, questionnaires, and interviews with 34 construction industry professionals in Southeast England were conducted to investigate their perceptions of BREEAM, the extra value it contributes to projects, and the possible limitations hindering its wider adoption. Findings show that while there is an upfront investment associated with achieving BREEAM certification, the benefits of such certification include added values such as improved environmental performance, increased market appeal, improved indoor air quality, reduced carbon emissions, and lower operational costs. This study validates the need to encourage wider adoption of sustainable building practices and promote the use of the BREEAM methodology in the UK. This research provides a foundation for future research and development in this area, with the goal of reducing carbon emissions and promoting sustainable development.

Keywords: BREEAM; Benefits; Cost; Construction industry; Sustainability; Values

Commentary

16 December 2024

State of the ART: Drug Screening Reveals Artesunate as a Promising Anti-Fibrosis Therapy

Fibrosis is a progressive pathological process that severely impairs normal organ function. Current treatments for fibrosis are extremely limited, with no curative approaches available. In a recent article published in Cell, Zhang and colleagues employed drug screening using ACTA2 reporter iPSC-derived cardiac fibroblasts and identified artesunate as a potent antifibrotic drug by targeting MD2/TLR4 signaling. This study provides new insights into strategies for exploiting existing drugs to treat fibrosis.

Keywords: Fibrosis; Drug screening; Artesunate; MD2/TLR4

Research Highlight

13 December 2024

F-ZrO2 Based, Solar Driven Photocatalytic Production of High-Purity CO from Formic Acid

High-purity carbon monoxide is crucial for various industrial applications, but current production methods are costly and require complex purification steps. A photothermal approach has been explored for producing high-purity carbon monoxide from formic acid, optimizing conditions to favor the dehydration pathway and minimizing hydrogen contamination. Using zirconium dioxide-based catalysts and sunlight-driven processes enhances efficiency, achieving high-purity carbon monoxide with reduced hydrogen by-products. The photothermal technique offers a promising, sustainable method for high-purity carbon monoxide production from formic acid, which could significantly reduce industrial costs and environmental impact.

Keywords: CO; Formic acid decomposition; Photothermal catalysis; ZrO2

Article

12 December 2024

Adsorption of Bisphenol A and 2,6-Dichlorophenol in Water Using Magnetic Phosphogypsum Composite Materials

Phenolic pollutants in water bodies pose a huge threat to human health and environmental safety. In this paper, a hydrophobicity-enhanced magnetic C-SiO2/MPG composite was prepared by a two-step method to remove bisphenol A (BPA)and 2,6-dichlorophenol (2,6-DCP), typical phenolic trace pollutants in livestock wastewater and natural water bodies. The results of pH gradient experiments showed that C-SiO2/MPG showed a stable removal effect on BPA in the pH range of 211. The adsorption of 2,6-DCP by C-SiO2/MPG peaked at pH = 2, while the adsorption of 2,6-DCP by C-SiO2/MPG was severely inhibited under alkaline conditions. The PSO kinetic model and the Langmuir isotherm model can better describe the adsorption process of BPA and 2,6-DCP on C-SiO2/MPG, indicating that the monolayer chemical adsorption has a rate-controlling step. With the Langmuir equation fitting, the maximum adsorption capacity of C-SiO2/MPG for BPA and 2,6-DCP at 298 K was calculated to be 561.79 mg/g and 531.91 mg/g, respectively. The results of adsorption thermodynamics indicated that the adsorption of BPA and 2,6-DCP on C-SiO2/MPG was spontaneous, accompanied by a process of entropy decrease. C-SiO2/MPG showed good environmental resistance and repeated use stability for BPA and 2,6-DCP in electrolyte ion interference, actual water samples and cycle experiments. Mechanism analysis showed that the adsorption of BPA and 2,6-DCP on C-SiO2/MPG was mainly controlled by hydrogen bonding and hydrophobic interactions. This study designed an efficient adsorbent for phenolic pollutants that can be used in actual wastewater and broadened the resource utilization of industrial waste phosphogypsm.

Keywords: Phosphogypsum; Magnetic nanoparticles; Hydrophobic alkyl chains; Adsorption; Phenolic pollutants; Water pollution

Article

10 December 2024

Sailing the X.0 Wave Theory: Navigating the Future of Civilization

This paper delves into the X.0 Wave/Tomorrow Age Theory, a comprehensive framework conceived, invented, introduced, and developed by Prof. Dr. Hamid Mattiello between 2010 and 2017, to analyze the evolution of human civilization through distinct epochs of knowledge, technology, and business (KTB). The theory segments history into transformative waves, from the first development (X.0 ≤ 1.0) and Agricultural Age (X.0 = 1.0) and the X.0 Wave/Tomorrow Age Theory (2.1 ≤ X.0 ≤ 2.2) spanning the 17th Century to 1870, to the current Age of Artificial Intelligence (X.0 = 4.0). It also projects into the anticipated Human Age (X.0 = 5.0) and Transhuman Age (X.0 = 6.0) and beyond (6.0 ≤ X.0). Each wave represents a revolutionary phase characterized by significant advancements that shape societies, industries, and technologies. The X.0 Wave Theory integrates these historical phases with the Seven Pillars of Sustainability (7PS) to evaluate their societal impacts. The paper explores how these waves influence future developments by examining historical roots, emerging technological paradigms, and socio-economic dynamics. It examines how advancements in AI, biotechnology, and virtual reality are reshaping industries and global business practices, while also addressing the ethical and sustainability considerations essential for navigating these changes. By forecasting future trends, confronting current challenges, and preparing for potential crises, the X.0 Wave Theory offers a robust framework for understanding and adapting to the rapid pace of technological evolution. This paper provides deep insights into how these transformative waves shape our past, present, and future, offering valuable perspectives for navigating the complexities of an increasingly digital and interconnected world.

Keywords: The X.0 Wave/Tomorrow age theory; Human civilization evolution; Knowledge; Technology; Business epochs (KTB) model; AI (Artificial Intelligence); Human and transhuman age; Seven pillars of sustainability (7PS) model; Technological paradigms; Socio-economic dynamics; Biotechnology; Virtual reality; Ethical considerations; Sustainability; Future trends; Technological evolution

Review

09 December 2024

Synthesize and Applications of Biodegradable Plastics as a Solution for Environmental Pollution Due to Non-Biodegradable Plastics, a Review

Biodegradable plastics are a potential sustainable alternative to conventional petrochemical-based non-degradable plastics. Due to their lightweight, flexibility, durability, versatile applications, chemical inertness, electrical and heat insulation, and conductivity, plastics have become an essential material for many industries, with annual production currently exceeding 450 million tons. However, these materials are non-biodegradable, leading to detrimental consequences such as the formation of microplastics from improper disposal and the generation of toxic gases, including furans, dioxins, mercury, and polychlorinated biphenyls, from burning plastic waste. This results in environmental pollution, affecting land, water bodies, and the atmosphere. In response, studies where the focus has been on creating bio-degradable polymers such as polylactic acid, polyhydroxy alkanoates, Polycaprolactone, Poly(butylene adipate-co-terephthalate), and Polybutylene succinate, which were extracted from renewable resources or chemically modified as biodegradable polymers. Biodegradable polymers exhibit a wide range of properties and can now be modified to be used in various applications suitable for substituting some conventional plastic products. Thus, the article highlights the critical issue of environmental pollution caused by non-biodegradable plastics and provides a comprehensive overview of the synthesis processes, properties, novel applications, and challenges associated with the use of biodegradable plastics.

Keywords: Biodegradable plastics; Environmental pollution; Plastic waste management; Polyhydroxyalkanoates; Poly(lactic acid); Renewable resources

Review

09 December 2024

The Multifaceted Roles of Neutrophil Death in COPD and Lung Cancer

Chronic obstructive pulmonary disease (COPD) and lung cancer are closely linked, with individuals suffering from COPD at a significantly higher risk of developing lung cancer. The mechanisms driving this increased risk are multifaceted, involving genomic instability, immune dysregulation, and alterations in the lung environment. Neutrophils, the most abundant myeloid cells in human blood, have emerged as critical regulators of inflammation in both COPD and lung cancer. Despite their short lifespan, neutrophils contribute to disease progression through various forms of programmed cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, and NETosis, a form of neutrophil death with neutrophil extracellular traps (NETs) formation. These distinct death pathways affect inflammatory responses, tissue remodeling, and disease progression in COPD and lung cancer. This review provides an in-depth exploration of the mechanisms regulating neutrophil death, the interplay between various cell death pathways, and their influence on disease progression. Additionally, we highlight emerging therapeutic approaches aimed at targeting neutrophil death pathways, presenting promising new interventions to enhance treatment outcomes in COPD and lung cancer.

Keywords: Nuetrophil; Cell death; COPD; Lung cancer
TOP