Sort by

Artiles

Article

19 February 2024

Single Cell Analysis of Lung Lymphatic Endothelial Cells and Lymphatic Responses during Influenza Infection

Tissue lymphatic vessels network plays critical roles in immune surveillance and tissue homeostasis in response to pathogen invasion, but how lymphatic system per se is remolded during infection is less understood. Here, we observed that influenza infection induces a significant increase of lymphatic vessel numbers in the lung, accompanied with extensive proliferation of lymphatic endothelial cells (LECs). Single-cell RNA sequencing illustrated the heterogeneity of LECs, identifying a novel PD-L1+ subpopulation that is present during viral infection but not at steady state. Specific deletion of Pd-l1 in LECs elevated the expansion of lymphatic vessel numbers during viral infection. Together these findings elucidate a dramatic expansion of lung lymphatic network in response to viral infection, and reveal a PD-L1+ LEC subpopulation that potentially modulates lymphatic vessel remolding.

Keywords: Lymphatic endothelial cells (LECs); Single cell; Influenza infection; Lung injury; Regeneration; scRNA-seq; PD-L1

Article

18 February 2024

The Sustainable Development Concept in the Polish Legal Space from a Legal-Dogmatic Perspective

The sustainable development concept is of crucial importance for the socioeconomic development processes, not only at the international community level, but also—or, perhaps, particularly—at the national or even local levels. The aim of the article is to demonstrate, from a legal-dogmatic perspective, the place, role and significance of the sustainable development concept in the Polish legal space. This perspective applies to both the state policy intended to formulate a strategy which provides a basis for law-making processes and to find normative solutions making it possible to reconcile legally protected values which sometimes compete with one another, with account taken of the needs of future generations. The sustainable development concept has been very broadly followed in Poland not only in the legal doctrine, but also in the doctrine of economic and social sciences. This term has turned out to be such an effective political catchword that it has been commonly abused and, therefore, it has lost a good deal of its social importance; this makes it substantially more difficult to apply a normative approach to the issues related to the implementation of the concept in legislative practice. In the Polish legal space, the sustainable development concept has become the leading theme of many documents and legal acts, particularly those concerned with environmental protection, but also, although to a much more modest extent, those addressing the issues of socioeconomic development.

Keywords: Sustainable development; Brundtland Report; Notions and definitions; Polish Constitution; Legal character of principle of sustainable development; Polish policy and law on sustainable development

Review

13 February 2024

3D Printing Technology for Rapid Response to Climate Change: Challenges and Emergency Needs

Providing rapid, efficient, inexpensive, and resilient solutions is an eminent and urgent need for emergency relief conditions, mainly and increasingly driven by the impacts of climate change. Under such disastrous circumstances, the current practice involves preparation, dispatching and managing significant amounts of materials, resources, manpower, and transportation of basic needs, which can be hindered remarkably by infrastructure damage and massive loss of lives. However, an emerging technology known as 3D printing (3DP) can play a significant role and rapidly bring unlimited innovative solutions in such conditions with much lesser resources to meet the necessities of large populations affected. Considering the recent progress of 3DP technology and applications in different industrial and consumer sectors, this study aims to provide an analysis of the status and current progress of 3DP technology in various fields to understand and present its potential for readiness and response to disasters, emergency and relief need driven by climate change. Secondly, this study also presents a sustainability assessment of 3DP technology for such cases to evaluate economic, environmental, and social impacts. Finally, policies and strategies are suggested to adapt 3DP technology in different sectors to prepare for large-scale emergencies.

Keywords: 3D printing; Additive manufacturing; Disaster; Climate change; Emergency response

Review

13 February 2024

Development and Perspective of Production of Terpenoids in Yeast

Terpenoids are a large class of secondary metabolites known for their remarkable diverse biological activities, making them widely utilized in the pharmaceutical, food, cosmetic, biofuel and agricultural fields. However, the current production of terpenoids heavily relies on plant extraction and chemical synthesis, which brings about concerns regarding infield, environmental and ecological issues. With the advancements in metabolic engineering and emerging synthetic biology tools, it is now possible to sustainably produce these high value-added terpenoids using microbial chassis. Among them, yeast has emerged as a promising candidate for the heterologous biosynthesis of terpenoids due to its inherent advantages, including robustness, safety, and the availability of sufficient precursor. This review focuses on the diverse strategies employed to enable terpenoids production in yeasts. These strategies encompass metabolic engineering approaches to optimize the mevalonate pathway, protein engineering techniques to improve terpenoid biosynthesis, the applications of organelles compartmentalization, high throughput screening and global approaches for the development of efficient cell factories. Furthermore, this review discusses the future prospects and challenges associated with yeast-based terpenoid production, while also emphasizing guidelines for future studies in this field.

Keywords: Terpenoids; Metabolic engineering; Protein engineering; Subcellular compartments; Global approaches; Yeast

Article

06 February 2024

Geographical Discrepancies in Higher Education in Sweden

There is a growing awareness of the importance of higher education in Sweden to reduce social differences in society. There are also various mechanisms that individuals relate to that favour either the status quo or change based on an ideal of higher education. Individuals live in a geographical context with a number of ‘key actors’ who influence the perception of higher education with varying degrees of intensity. Paradoxically, despite several reforms to broaden recruitment, it can be seen that relative inequalities persist in terms of residents with higher education in Sweden, not least from a regional perspective. The purpose of this article is to shed light on geographical differences in the higher education level of the population over time from a Swedish perspective. The study shows that higher education has a geographical centre-periphery perspective, but not exclusively. There are thus additional influencing factors that in various ways relate to the social context in which the individual is located. We can conclude from our empirical data that the reforms implemented to broaden recruitment have not had the desired effect, especially for the group of men. We find it likely that what differentiates women and men is who their individual ‘key players’ are and how they interact. From an academic education perspective and as an intermediary of higher education, there is therefore a challenge to be able to identify who these “key players” are in order to be able to be an important actor in contributing to the desired broader recruitment that the government is striving to achieve.

Keywords: Higher education; Center-periphery; Knowledge; Key players; Regional development; Sweden

Article

06 February 2024

Bio-Based Production of Uroporphyrin in Escherichia coli

Uroporphyrin (UP) is a porphyrin compound with medical applications and a key precursor for heme biosynthesis. However, there is no biosynthetic strategy for UP production. In this study, we present a novel bioprocess for enhanced production of UP in engineered Escherichia coli. We first implemented the Shemin/C4 pathway heterologously in an E. coli strain with an enlarged intracellular pool of succinyl-CoA. Using a plasmid with the trc promoter regulating the expression of a synthesized gene operon, the effects of key pathway genes, including hemA, hemB, hemC, and hemD, on UP biosynthesis were characterized. By cultivating the resulting engineered E. coli strains in a batch bioreactor with 30 g/L glycerol under aerobic conditions, up to 901.9 mg/L UP was produced. Most of the synthesized UP was extracellularly secreted with a high purity more than 80 wt%, facilitating its downstream purification. The study paves the way for large-scale bio-based production of UP using synthetic biology and metabolic engineering strategies.

Keywords: Bio-based production; Escherichia coli; Metabolic engineering; Shemin pathway; Tetrapyrrole biosynthetic pathway; Uroporphyrin

Article

01 February 2024

Molecular Regulation of Transforming Growth Factor-β1-induced Thioredoxin-interacting Protein Ubiquitination and Proteasomal Degradation in Lung Fibroblasts: Implication in Pulmonary Fibrosis

Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-β1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-β1 (TGF-β1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-β1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-β1 exposure. TGF-β1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-β1-induced degradation. Furthermore, downregulation of ubiquitin-specific protease-13 (USP13) promoted the TGF-β1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.

Keywords: TXNIP; Lung fibroblasts; Lung fibrosis; Deubiquitination; TGF-β1; USP13

Article

31 January 2024

Design of Intelligent and Sustainable Manufacturing Production Line for Automobile Wheel Hub

The wheel hub is an important part of the automobile, and machining affects its service life and driving safety. With the increasing demand for wheel productivity and machining accuracy in the automotive transport sector, automotive wheel production lines are gradually replacing human production. However, the technical difficulties of conventional automotive wheel production lines include insufficient intelligence, low machining precision, and large use of cutting fluid. This paper aims to address these research constraints. The intelligent, sustainable manufacturing production line for automobile wheel hub is designed. First, the machining of automotive wheel hubs is analyzed, and the overall layout of the production line is designed. Next, the process equipment system including the fixture and the minimum quantity lubrication (MQL) system are designed. The fixture achieves self-positioning and clamping functions through a linkage mechanism and a crank–slider mechanism, respectively, and the reliability of the mechanism is analyzed. Finally, the trajectory planning of the robot with dual clamping stations is performed by RobotStodio. Results show the machining parameters for a machining a wheel hub with a diameter of 580 mm are rotational speed of 2500 rpm, cutting depth of 4 mm, feed rate of 0.5 mm/r, and minimum clamping force of 10881.75 N. The average time to move the wheel hub between the roller table and each machine tool is 27 s, a reduction of 6 s compared with the manual handling time. The MQL system effectively reduces the use of cutting fluid. This production line can provide a basis and reference for actual production by reasonably planning the wheel hub production line.

Keywords: Automobile wheel hub; Production line; Machining; Fixture; Sustainable manufacturing

Article

29 January 2024

A Novel High Step-up DC-DC Converter Using State Space Modelling Technique for Battery Storage Applications

This paper focuses a novel non-isolated coupled inductor based DC-DC converter with excessive VG (voltage gain) is analyzed with a state-space modeling technique. It builds up of using three diodes, three capacitors, an inductor and CI (coupled inductor). The main switch S is turn on due to body diode and voltage stress is reduced at the switch S by using diode D1 and Capacitor C1. This paper focuses on design modelling, mathematical calculations and operation principle of DC-DC converter is discussed with state-space modelling technique. The performance has been presented for two different voltages for EV applications, i.e., 12 V, 48 V as input voltages with a high step-up outputs of 66 V and 831.7 V respectively. The converter stability is studied and determined the bode plot along with simulation performance results which are carried out using MATLAB R2022B.

Keywords: DC-DC Converter; Energy Storage System; High Step-Up; State-Space Modelling

Article

29 January 2024

Determining the Identity of Corpses Using Fingerprints: Results from Practice and Analysis of Process Used in the Republic of Serbia

In today’s world, when there is a constant fight against organized crime and terrorism, when we have cases of mass accidents (plane crashes, train crashes, buses, etc.), the constant need for precise and quick identification of persons is evident in these cases. When we have situations with a large number of dead in various conditions, as well as complete or only parts of the body being on the spot, there is a need to use scientific and forensic methods in order to find out the reliable identity of these people. Furthermore, there is a need, in some cases, to identify persons who committed suicide, were killed, or died a natural death (accidental death) and who do not have documents according to which their identity can be determined. The aim of this paper will, however, be to identify a group of persons who need to be identified, known as unidentified corpses. Method. Describe and discuss the way of determining identity based on dactyloscopic data, which provides accurate and unambiguous identification, using fingerprints. Results. The identity was determined in 1271 cases of unidentified corpses by dactyloscopic comparison of fingerprints with a database containing fingerprints of about 8,000,000 indisputably identified persons. It was confirmed in 1139 cases. Conclusion. The high degree of identification in our research, as much as 89.6%, makes this method rightly represented as a standard method for confirming a person’s identity.

Keywords: Unidentified corpse; Identity; Dactyloscopy; Fingerprint; Friction ridge; Identification; Verification
TOP