Latest News More News

Recent Articles More Articles

Article

01 April 2025

B, Gd Co-Doped TiO2 Nanotube Arrays for Efficient Degradation of Gaseous Toluene under Visible Light Irradiation

Although photocatalytic degradation of VOCs has attracted widespread attention, the efficient visible-light-driven photocatalytic degradation performance remains a challenge. This work presents the visible-light-driven photocatalytic degradation of gaseous toluene over B, Gd co-doped TiO2 nanotube arrays prepared via a controllable electrochemistry method. It was found that B and Gd co-doping strategy not only enhances the visible light responsiveness of TiO2 nanotube arrays but also introduces moderate oxygen vacancies on the surface of TiO2, which is beneficial to the formation of free hydroxyl radicals and their attack on toluene molecules. The doping order also affects the photocatalytic performance. The optimized sample achieves an enhanced degradation efficiency for toluene under visible light irradiation and exhibits considerable stability. This work may provide an efficient TiO2-based photocatalyst for the removal of volatile organic compounds for air purification and give an understanding of the mechanism of photocatalytic degradation of toluene over co-doping TiO2.

Review

01 April 2025

Sustainable Manufacturing and Applications of Wide-Bandgap Semiconductors—A Review

Wide-bandgap (WBG) semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) are revolutionizing high-power electronics due to their superior thermal conductivity, breakdown voltage, and energy efficiency. These materials are critical in electric vehicles, renewable energy systems, and high-frequency applications like 5G infrastructure. However, their production processes are resource-intensive and present significant environmental challenges. This review evaluates recent advancements in sustainable WBG semiconductor manufacturing, focusing on low-energy epitaxial growth, closed-loop recycling, and the mitigation of toxic by-products. Additionally, it highlights the role of Industry 4.0 innovations, such as AI-driven process optimization and IoT-based resource management, in enhancing sustainability. The review identifies research gaps in cost reduction, alternative WBG materials like Gallium Oxide (Ga2O3) and Diamond, and scalable green manufacturing solutions. It underscores the necessity for industry-wide collaboration and regulatory frameworks to drive the adoption of eco-friendly semiconductor fabrication. The findings of this study provide a roadmap for advancing sustainability in WBG semiconductor production, ensuring their long-term viability in the transition toward energy-efficient technologies.

Case Report

01 April 2025

Behcet’s Disease: An Uncommon Cause of Severe Tricuspid Stenosis

Behçet’s disease is a vasculitic condition of unknown etiology that is characterized by oral and genital ulcers as well as various skin and ocular lesions. Cardiovascular manifestations of Behçet’s disease are rare, with very few cases having been reported previously in literature. We report a case of severe tricuspid stenosis and pulmonary artery aneurysm in a 29-year-old man with Behçet’s disease, who demonstrated characteristic vascular findings on computed tomography angiography and diagnostic valvular findings on transthoracic echocardiogram and cardiac magnetic resonance imaging. The patient’s Behçet’s disease was treated initially with cyclophosphamide, azathioprine, and prednisone, which subsequently led to complete resolution of the pulmonary artery aneurysm. As for the tricuspid stenosis, though symptoms were managed with diuretic therapy, the severity of valvular dysfunction required consideration and an attempt at tricuspid valve replacement surgery, which unfortunately was met with complications and led to an unfavorable outcome of refractory cardiogenic shock and death. Given the rarity of cardiovascular involvement in patients with Behçet’s disease, along with the lack of clear treatment guidelines, management of findings of tricuspid stenosis and pulmonary artery aneurysm in these patients can be challenging.

Commentary

01 April 2025

Perspective

01 April 2025

Perspectives on the Development in the Selective Oxidation of Glycerol to Value-Added Chemicals via Photoelectrocatalysis Coupled with Hydrogen Evolution

Harvesting sunlight to produce clean hydrogen fuel remains one of the main challenges for solving the energy crisis and ameliorating global warming. Photoelectrochemical (PEC) water splitting is considered to be a promising method for H2 production in the future. However, the efficiency still remains challenging due to the sluggish reaction dynamics for water oxidation. Recently, the thermodynamically favorable oxidation of glycerol in PEC systems has gained significant attention for its ability to produce value-added chemicals while simultaneously generating hydrogen. This process not only enhances the yield of high-value products but also minimizes energy consumption and reduces CO2 emissions. Valuable products from glycerol oxidation include 1,3-dihydroxyacetone (DHA), glyceraldehyde (GLD), tartronic acid (TA), formic acid (FA), and glyceric acid (GA). Thus, it is important to improve selectivity and productivity. In this work, we mainly summarize the recent research progress in improving the selectivity and productivity of glycerol upgrading products on the different photoanodes.

TOP